การทดลองสุ่มและเหตุการณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้ได้รวบรวมความรู้เรื่อง การทดลองสุ่มและเหตุการณ์ ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ และอธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง การทดลองสุ่มและเหตุการณ์ น้องๆสามารถทบทวน ความน่าจะเป็น ได้ที่  ⇒⇒ ความน่าจะเป็น ⇐⇐

การทดลองสุ่ม

การทดลองสุ่ม  คือ การทดลองซึ่งทราบว่าผลลัพธ์ที่จะเกิดขึ้นอาจจะเป็นอะไรได้บ้าง  แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าในแต่ละครั้งที่ทำการทดลอง  ผลที่เกิดขึ้นจากการทดลองจะเป็นอะไรในบรรดาผลลัพธ์ที่อาจเป็นไปได้เหล่านั้น  เช่น

  • การโยนเหรียญซึ่งมีผลลัพธ์ที่จะเกิดขึ้นได้ 2 แบบ คือ หัวหรือก้อย เมื่อโยนเหรียญ ให้ดีก็จะไม่สามารถทำนายผลลัพธ์ล่วงหน้าว่าจะออกหัวหรือก้อย
  • การสับไพ่สำรับหนึ่งซึ่งมีไพ่ทั้งหมด 52 ใบ ถ้าดึงออกมาหนึ่งใบจะไม่สามารถบอกล่วงหน้าได้ว่าไพ่ใบนั้นเป็นไพ่ใบใด การดึงไพ่จากสำรับจึงเป็นการทดลองสุ่ม

การทดลองสุ่มแต่ละครั้ง จะมีผลลัพธ์เกิดขึ้นเสมอและอาจมีได้แตกต่างกัน ผลลัพธ์ทั้งหมดเหล่านั้นมีอะไรบ้าง หาได้จากการแจงนับ เช่น

  • โยนเหรียญ 1 เหรียญ 1 ครั้ง ผลลัพธ์ที่อาจจะเกิดขึ้น คือ หัว หรือ ก้อย
  • โยนลูกเต๋า 1 ลูก 1 ครั้ง ผลลัพธ์ที่อาจจะเกิดขึ้น คือ 1, 2, 3, 4, 5 หรือ 6

ผลลัพธ์ที่อาจจะเกิดขึ้นจากการทดลองสุ่มกรณีใดกรณีหนึ่ง เรียกผลลัพธ์ในกรณีที่สนใจจากการทดลองสุ่มนั้นว่า เหตุการณ์

ในการทดลองสุ่มนี้สามารถนำไปใช้ในการช่วยเลือกตัดสินใจกระทำสิ่งใดสิ่งหนึ่ง เพื่อให้เกิดผลที่พึงพอใจต่อตนเองมากที่สุด

เหตุการณ์บางเหตุการณ์ไม่เป็นการทดลองสุ่ม เพราะเกิดเพียงเหตุการณ์เดียวหรือทราบผลที่เกิดขึ้นอย่างแน่นอนแล้ว เช่น

    • ในเอเชียพระอาทิตย์ขึ้นทางทิศตะวันออก
    • นิ้งหยิบได้ลูกแก้วสีขาวจากกล่องที่มีลูกแก้วสีขาวบรรจุอยู่ 3 ลูก
    • น้ำหนึ่งเลือกซื้อรถจักรยานสีแดงตามที่ตัวเองชอบ

เหตุการณ์

เหตุการณ์  หมายถึง  ผลลัพธ์ที่เราสนใจจากผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่ม

ตัวอย่างที่ 1   จากการทดลองทอดลูกเต๋า 2 ลูกพร้อมกัน 1 ครั้ง  จงตอบคำถามต่อไปนี้

1) ผลรวมของแต้มลูกเต๋าเป็น 7

2) ผลของการทอดลูกเต๋าครั้งแรกเป็น 1

3) เหตุการณ์ที่จะได้แต้มเหมือนกัน

วิธีทำ         ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทอดลูกเต๋า 2 ลูกพร้อมกัน 1 ครั้ง  คือ

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

1) ผลรวมของแต้มลูกเต๋าเป็น 7

ผลลัพธ์ที่เราสนใจนั้น  ได้แก่  (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) และ (6, 1)

2) ผลของการทอดลูกเต๋าครั้งแรกเป็น 1

ผลลัพธ์ที่เราสนใจนั้น  ได้แก่  (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) และ (1, 6)

3) เหตุการณ์ที่จะได้แต้มเหมือนกัน

ผลลัพธ์ที่เราสนใจนั้น  ได้แก่  (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) และ (6, 6)

ตัวอย่างที่ 2     โยนเหรียญบาท 3 เหรียญ 1 ครั้ง พร้อมกัน จงหาผลลัพธ์ของเหตุการณ์ต่อไปนี้

1)  เหตุการณ์ที่จะออกหัว  2  เหรียญ

2)  เหตุการณ์ที่จะออกหัวอย่างน้อย 1 เหรียญ

3) เหตุการณ์ที่จะออกก้อยอย่างน้อย  2  เหรียญ

4) เหตุการณ์ที่จะออกหัวทั้ง 3 เหรียญ หรือได้ก้อยทั้ง 3 เหรียญ

วิธีทำ     ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการโยนเหรียญบาท 3 เหรียญ 1 ครั้ง พร้อมกัน อาจใช้แผนภาพต้นไม้ ดังนี้

การทดลองสุ่มและเหตุการ เหรียญ

จะได้ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี  8  แบบ  คือ  HHH, HHT, HTH, HTT, THH, THT, TTH หรือ  TTT

1)  เหตุการณ์ที่จะออกหัว  2  เหรียญ มีผลลัพธ์  3 แบบ  คือ  HHT, HTH, และ THH

2)  เหตุการณ์ที่จะออกหัวอย่างน้อย 1 เหรียญ มีผลลัพธ์ 7 แบบ คือ  HHH, HHT, HTH, HTT, THH, THT และ TTH

3) เหตุการณ์ที่จะออกก้อยอย่างน้อย  2  เหรียญ มีผลลัพธ์ 4 แบบ คือ  HTT, THT, TTH  และ TTT

4) เหตุการณ์ที่จะออกหัวทั้ง 3 เหรียญ หรือได้ก้อยทั้ง 3 เหรียญ มีผลลัพธ์ 2 แบบ คือ  HHH และ TTT

ตัวอย่างที่ 3   สุ่มหยิบสลาก 2 ใบ จากในกล่องที่บรรจุสลาก 3 ใบ  ซึ่งมีหมาย 1, 2 และ 3 ตามลำดับ จงหาผลลัพธ์ของเหตุการณ์ที่จะได้ผลบวกของสลากสองใบเท่ากับ 5  เมื่อกำหนดการทดลองสุ่มดังนี้

1)  หยิบสลาก 2 ใบ พร้อมกัน

2)  หยิบสลากทีละใบโดยไม่ใส่คืนก่อนจะหยิบสลากใบที่สอง

3)  หยิบสลากทีละใบโดยใส่คืนก่อนจะหยิบสลากใบที่สอง

วิธีทำ     1)  หยิบสลาก 2 ใบ พร้อมกัน จะได้ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี 3 แบบ คือ (1, 2), (1, 3) หรือ (2, 3)

เหตุการณ์ที่ผลบวกของสลากทั้งสองใบเท่ากับ 5 มี 1 แบบ คือ (2, 3)

2)  หยิบสลากทีละใบโดยไม่ใส่คืนก่อนจะหยิบสลากใบที่สอง จะได้ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี 6 แบบ คือ (1, 2), (1, 3), (2, 1), (2, 3), (3, 1) หรือ (3, 2)

เหตุการณ์ที่ผลบวกของสลากทั้งสองใบเท่ากับ 5 มี 2 แบบ คือ (2, 3) และ (3, 2)

3)  หยิบสลากทีละใบโดยใส่คืนก่อนจะหยิบสลากใบที่สอง จะได้ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี 9 แบบ คือ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) หรือ (3, 3)

เหตุการณ์ที่ผลบวกของสลากทั้งสองใบเท่ากับ 5 มี 2 แบบ คือ (2, 3) และ (3, 2)

ตัวอย่างที่ 4   กล่องใบหนึ่งมีสลากอยู่ 4 ใบ  แต่ละใบเขียน A, B, C และ D  กำกับไว้  จงหาผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ตามเงื่อนไขต่อไปนี้

1) สุ่มหยิบ 2 ใบพร้อมกัน

2) สุ่มหยิบ 3 ใบพร้อมกัน

วิธีทำ   1) สุ่มหยิบ 2 ใบพร้อมกัน เนื่องจาก  การสุ่มหยิบ 2 ใบ  พร้อมกันนั้นไม่สนใจลำดับของการหยิบ

ดังนั้น ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการสุ่มหยิบสลาก 2 ใบ พร้อมกัน ได้แก่ AB, AC, AD, BC, BD และ CD

2) สุ่มหยิบ 3 ใบพร้อมกัน เนื่องจาก  การสุ่มหยิบ 3 ใบ  พร้อมกันนั้นไม่สนใจลำดับของการหยิบเช่นกัน

ดังนั้น  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการสุ่มหยิบสลาก 3 ใบ พร้อมกัน ได้แก่  ABC, ABD, ACD และ BCD

ตัวอย่างที่ 5 สุ่มหยิบสลาก 1 ใบ  จากสลาก 5 ใบ  ที่มีตัวอักษร A, E, I, O และ U  กำกับใบละหนึ่งตัว

 1) ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองนี้

 2)  เหตุการณ์ที่หยิบได้สลากที่เป็นพยัญชนะ

วิธีทำ   1) ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองนี้  ได้แก่  เหตุการณ์ที่หยิบได้สลากที่เป็นสระ  ได้แก่  A, E, I, O หรือ U

2)  เหตุการณ์ที่หยิบได้สลากที่เป็นพยัญชนะ  ไม่มี

ตัวอย่างที่ 6 มีอมยิ้มอยู่ 3 สี สีละ 1 ลูก  คือ  สีเหลือง  สีส้ม  และสีเขียว  ใส่อมยิ้มทั้งหมดลงในกล่อง แล้วสุ่มหยิบอมยิ้ม 2 ลูก จงหาผลลัพธ์ของเหตุการณ์ที่จะหยิบได้อมยิ้มสีเดียวกัน เมื่อกำหนดการทดลองสุ่มดังนี้

 1) หยิบอมยิ้ม 2 ลูก พร้อมกันโดยไม่ดู

 2) หยิบครั้งละ 1 ลูก โดยไม่ใส่คืน

วิธีทำ    กำหนดให้   ล  แทน อมยิ้มสีเหลือง

   ส  แทน อมยิ้มสีส้ม

   ข  แทน อมยิ้มสีเขียว

1)   หยิบอมยิ้ม 2 ลูก พร้อมกันโดยไม่ดู

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี 3 แบบ คือ (ส, ล), (ข, ล) และ  (ข, ส)

เหตุการณ์ที่จะหยิบได้อมยิ้มสีเดียวกันไม่สามารถเกิดขึ้นได้  เนื่องจากอมยิ้มมีอยู่  3 สี สีละ 1 ลูก ไม่สามารถหยิบได้อมยิ้มสีเดียวกัน 2 ลูก ได้

2)   หยิบครั้งละ 1 ลูก โดยไม่ใส่คืน

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นจากการทดลองสุ่มมี 6 แบบ คือ  (ล, ส), (ล, ข),  (ส, ล), (ส, ข), (ข, ล) และ (ข, ส)

เหตุการณ์ที่จะหยิบได้อมยิ้มสีเดียวกันไม่สามารถเกิดขึ้นได้  เนื่องจากอมยิ้มมีอยู่  3 สี สีละ 1 ลูก ไม่สามารถหยิบได้อมยิ้มสีเดียวกัน 2 ลูก ได้

เมื่อน้องๆเรียนรู้เรื่อง การทดลองสุ่มและเหตุการณ์ จะทำให้น้องๆ สามารถเข้าใจการทดลองสุ่มและเหตุการณ์ เพื่อสามารถนำมาคำนวณหาความน่าจะเป็นของเหตุการณ์ได้ในลำดับถัดไป ได้อย่างถูกต้องและแม่นยำ และสามารถนำความรู้ที่ได้ไปประกอบในการตัดสินใจเรื่องต่างๆ ในอนาคตได้

วิดีโอ การทดลองสุ่มและเหตุการณ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.6 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.6 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs  Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

_ม2 Present Continuous Tense Profile

Present Continuous Tense

สวัสดีนักเรียนชั้นม.3 ที่น่ารักทุกคนค่า วันนี้เราจะไปเรียนรู้กันเรื่อง ” Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และข้อสอบวัดความเข้าใจหลังเรียนแบบปังๆกันจร้า หากพร้อมแล้วก็ไปลุยกันเลย เริ่มกับการใช้ Present Continuous Tense   อธิบายสิ่งที่กำลังเกิดขึ้นอยู่ในขณะนั้น เช่น Danniel is playing a football at the moment.

สมมูลและนิเสธ

สมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ

“สมมูลและนิเสธ” ของประโยคที่มีตัวบ่งปริมาณ สมมูลและนิเสธ เราเคยเรียนกันไปแล้วก่อนหน้านี้ แต่เป็นของประพจน์ p, q, r แต่ในบทความนี้จะเป็นสมมูลและนิเสธของประโยคที่มีตัวบ่งปริมาณ ซึ่งก็จะเอาเนื้อหาก่อนหน้ามาปรับใช้กับประโยคที่มีตัวบ่งปริมาณ สิ่งที่เราจะต้องรู้และจำให้ได้ก็คือ การสมมูลกันของประพจน์ เพราะจะได้ใช้ในบทนี้แน่นอนน ใครที่ยังไม่แม่นสามารถไปอ่านได้ที่ บทความรูปแบบของประพจน์ที่สมมูลกัน  นิเสธของตัวบ่งปริมาณ เมื่อเราเติมนิเสธลงไปในประโยคที่มีตัวบ่งปริมาณ ข้อความต่อไปนี้จะสมมูลกัน กรณี 1 ตัวแปร ∼∀x[P(x)] ≡ ∃x[∼P(x)] ∼∃x[P(x)]

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

วิชชุมมาลาฉันท์

เรียนรู้การแต่ง วิชชุมมาลาฉันท์ 8 ฉันท์ที่เปล่งสำเนียงยาวดุจสายฟ้า

ฉันท์ คือ ลักษณะถ้อยคำที่กวีได้ประพันธ์ขึ้นเพื่อให้เกิดความไพเราะ โดยกำหนดครุ ลหุ และสัมผัสไว้เป็นมาตรฐาน มีด้วยกันมากมายหลายชนิด จากที่บทเรียนครั้งก่อนเราได้เรียนรู้เกี่ยวกับที่มาและพื้นฐานการแต่งฉันท์ไปแล้ว บทเรียนในวันนี้เราจะมาเจาะลึกให้ลึกขึ้นไปอีกด้วยการฝึกแต่ง วิชชุมมาลาฉันท์ 8 กันค่ะ ฉันท์ประเภทนี้จะเป็นอย่างไร ทำไมถึงเป็น 8  ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำประพันธ์ประเภท ฉันท์   ฉันท์ในภาษาไทยได้แบบแผนมาจากอินเดีย ในสมัยพระเวท แต่ลักษณะฉันท์ในสมัยพระเวทไม่เคร่งครัดเรื่องครุ ลหุ นอกจากจะบังคับเรื่องจำนวนคำในแต่ละบท

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1