การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร

ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

ตัวอย่างสมการกำลังสองตัวแปรเดียว 

1.) x² + 3x +5 = 0

จะได้ว่า a = 1 , b = 3, c = 5

2.) 2x² + 5x +  1 = 0

จะได้ว่า a = 2 , b = 5 , c = 1

3.) x² + 7x = 3

เมื่อ บวกด้วย บวกเข้าด้วย -3 ทั้งสองข้างของสมการ จะได้ x² + 7x + (-3)= 3+(-3) ดังนั้น x² + 7x – 3 = 0

จะได้ว่า a = 1, b = 2, c = -3

การแก้สมการกำลังสองโดยการแยกตัวประกอบ

สมมติว่าแยกตัวประกอบพหุนามได้เป็น (x + d)(x + e) = 0 เราสามารถสรุปได้ว่า x + d = 0 หรือ x + e = 0 โดยที่ d และ e เป็นค่าคงตัว

สมการกำลังสองจะมีจำนวนคำตอบได้ไม่เกิน 2 คำตอบ

เช่น

(x – 5)(x + 2) = 0 ดังนั้น x -5 = 0 ⇒ x = 5 หรือ x +2 = 0 ⇒ x = -2

(2x + 3)(3x + 6) = 0 ดังนั้น 2x +3 = 0 ⇒ x = -\frac{3}{2} หรือ x + 2 = 0 ⇒ x = -2

ทำไมถึงรู้ว่า ในวงเล็บเท่ากับ 0 ???

ลองพิจารณา (x – 5)(x + 2) = 0

ให้ a แทน x – 5

b แทน x + 2 

จะได้ว่า ab = 0 เราลองคิดง่ายๆเลย จำนวนที่คูณกันแล้วจะได้ 0 ต้องมีตัวใดตัวหนึ่งเป็น 0 แสดงว่าไม่ a ก็ b ต้องเท่ากับ 0 หรืออาจจะเป็น 0 ทั้ง a และ b

ดังนั้นเราจึงได้ว่า ab = 0 แล้ว a = 0 หรือ b = 0

นั่นคือ x – 5 = 0 หรือ x + 2 = 0

การใช้สูตร การแก้สมการกำลังสอง

ให้ ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

สูตรที่เราจะใช้ในการแก้สมการกำลังคือ  การแก้สมการกำลังสอง

ข้อดีของการใช้สูตรเราสามารถรู้ได้ว่า สมการนั้นมีจำนวนคำตอบเท่าใด โดยพิจารณา การแก้สมการกำลังสอง

b^2-4ac > 0 แสดงว่าสมการมี 2 คำตอบ

b^2-4ac= 0 แสดงว่าสมการมี 1 คำตอบ

b^2-4ac< 0 แสดงว่าไม่มีคำตอบของสมการที่เป็นจำนวนจริง (หมายความว่ามีคำตอบแต่คำตอบนั้นไม่ใช่จำนวนจริง)

 

เราสามารถตรวจคำตอบของสมการได้ โดยการนำคำตอบที่ได้ แทนค่าลงไปใน x ถ้าสมการเป็นจริงแสดงว่า “คำตอบถูกต้อง”

 

ตัวอย่าง

x² + 3x +5 = 0

การแก้สมการกำลังสอง

เนื่องจาก b^2-4ac = -11 ซึ่งน้อยกว่า 0 ดังนั้น x ไม่มีคำตอบในจำนวนจริง

ตัวอย่าง

 

1.) x² + 3x -10 = 0

วิธีทำ การแก้สมการกำลังสอง

 

2.) 10x² – 7x -12 = 0

วิธีทำ การแก้สมการกำลังสอง

 

3.) x² + 3x +3 = 0

วิธีทำ 

การแก้สมการกำลังสอง

4.) (x -2)² = 0

วิธีทำ 

การแก้สมการกำลังสอง

 

5.) พิจารณาสมการต่อไปนี้ว่ามีกี่คำตอบ

5.1) x² + 9x + 1 = 0

การแก้สมการกำลังสอง

 

5.2) x² + 10x + 25 = 0

การแก้สมการกำลังสอง

5.3) x² + 2x + 10 = 0

การแก้สมการกำลังสอง

 

วีดิโอการแก้สมการกำลังสอง

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2 พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² +

สมบัติการคูณจำนวนจริง

สมบัติการคูณจำนวนจริง

จากบทความก่อนหน้านี้น้องๆได้เรียนเรื่องสมบัติการบวกจำนวนจริงไปแล้ว บทความนี้พี่ก็จะพูดถึงสมบัติการคูณจำนวนจริงซึ่งมีเนื้อหาคล้ายๆกันกับการบวก และมีเพิ่มสมบัติการแจกแจงเข้ามา เนื้อหาเหล่านี้ล้วนเป็นพื้นฐานสำคัญที่จะใช้ในการเรียนเนื้อหาบทต่อๆไป เมื่อน้องๆอ่านบทความนี้แล้วน้องๆจะเรียนเนื้อหาบทต่อๆไปได้ง่ายขึ้นแน่นอนค่ะ

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1