การแก้สมการกำลังสอง

การแก้สมการกำลังสอง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแก้สมการกำลังสอง

การแก้สมการกำลังสอง สามารถทำได้โดยการ แยกตัวประกอบพหุนามกำลังสอง และใช้สูตร เราแก้สมการเพื่อหาคำตอบหรือหาค่าของตัวแปร

ในบทความนี้พี่จะพูดถึงสมการกำลังสองตัวแปรเดียว ซึ่งอยู่ในรูป ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

ตัวอย่างสมการกำลังสองตัวแปรเดียว 

1.) x² + 3x +5 = 0

จะได้ว่า a = 1 , b = 3, c = 5

2.) 2x² + 5x +  1 = 0

จะได้ว่า a = 2 , b = 5 , c = 1

3.) x² + 7x = 3

เมื่อ บวกด้วย บวกเข้าด้วย -3 ทั้งสองข้างของสมการ จะได้ x² + 7x + (-3)= 3+(-3) ดังนั้น x² + 7x – 3 = 0

จะได้ว่า a = 1, b = 2, c = -3

การแก้สมการกำลังสองโดยการแยกตัวประกอบ

สมมติว่าแยกตัวประกอบพหุนามได้เป็น (x + d)(x + e) = 0 เราสามารถสรุปได้ว่า x + d = 0 หรือ x + e = 0 โดยที่ d และ e เป็นค่าคงตัว

สมการกำลังสองจะมีจำนวนคำตอบได้ไม่เกิน 2 คำตอบ

เช่น

(x – 5)(x + 2) = 0 ดังนั้น x -5 = 0 ⇒ x = 5 หรือ x +2 = 0 ⇒ x = -2

(2x + 3)(3x + 6) = 0 ดังนั้น 2x +3 = 0 ⇒ x = -\frac{3}{2} หรือ x + 2 = 0 ⇒ x = -2

ทำไมถึงรู้ว่า ในวงเล็บเท่ากับ 0 ???

ลองพิจารณา (x – 5)(x + 2) = 0

ให้ a แทน x – 5

b แทน x + 2 

จะได้ว่า ab = 0 เราลองคิดง่ายๆเลย จำนวนที่คูณกันแล้วจะได้ 0 ต้องมีตัวใดตัวหนึ่งเป็น 0 แสดงว่าไม่ a ก็ b ต้องเท่ากับ 0 หรืออาจจะเป็น 0 ทั้ง a และ b

ดังนั้นเราจึงได้ว่า ab = 0 แล้ว a = 0 หรือ b = 0

นั่นคือ x – 5 = 0 หรือ x + 2 = 0

การใช้สูตร การแก้สมการกำลังสอง

ให้ ax² + bx + c = 0 โดยที่ a, b, c เป็นค่าคงตัว และ a ≠ 0

สูตรที่เราจะใช้ในการแก้สมการกำลังคือ  การแก้สมการกำลังสอง

ข้อดีของการใช้สูตรเราสามารถรู้ได้ว่า สมการนั้นมีจำนวนคำตอบเท่าใด โดยพิจารณา การแก้สมการกำลังสอง

b^2-4ac > 0 แสดงว่าสมการมี 2 คำตอบ

b^2-4ac= 0 แสดงว่าสมการมี 1 คำตอบ

b^2-4ac< 0 แสดงว่าไม่มีคำตอบของสมการที่เป็นจำนวนจริง (หมายความว่ามีคำตอบแต่คำตอบนั้นไม่ใช่จำนวนจริง)

 

เราสามารถตรวจคำตอบของสมการได้ โดยการนำคำตอบที่ได้ แทนค่าลงไปใน x ถ้าสมการเป็นจริงแสดงว่า “คำตอบถูกต้อง”

 

ตัวอย่าง

x² + 3x +5 = 0

การแก้สมการกำลังสอง

เนื่องจาก b^2-4ac = -11 ซึ่งน้อยกว่า 0 ดังนั้น x ไม่มีคำตอบในจำนวนจริง

ตัวอย่าง

 

1.) x² + 3x -10 = 0

วิธีทำ การแก้สมการกำลังสอง

 

2.) 10x² – 7x -12 = 0

วิธีทำ การแก้สมการกำลังสอง

 

3.) x² + 3x +3 = 0

วิธีทำ 

การแก้สมการกำลังสอง

4.) (x -2)² = 0

วิธีทำ 

การแก้สมการกำลังสอง

 

5.) พิจารณาสมการต่อไปนี้ว่ามีกี่คำตอบ

5.1) x² + 9x + 1 = 0

การแก้สมการกำลังสอง

 

5.2) x² + 10x + 25 = 0

การแก้สมการกำลังสอง

5.3) x² + 2x + 10 = 0

การแก้สมการกำลังสอง

 

วีดิโอการแก้สมการกำลังสอง

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

NokAcademy_ม5 การใช้ Modal Auxiliaries

Modal Auxiliaries ที่สำคัญ

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modal Auxiliaries หรือ Modal verbs “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า รู้จักกับ Modal Auxiliaries   Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal verbs หรือ 

ป.5 ไวยากรณ์เรื่อง There is _ There are และ How many

ไวยากรณ์เรื่อง There is / There are และ How many

สวัสดีค่ะนักเรียนชั้น ป.5 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “ไวยากรณ์เรื่อง There is / There are และ How many” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ถามก่อนเรียน: อ้าวแล้ว Have/has ก็แปลว่า “มี” เหมือนกันไม่ใช่เหรอ แล้ว There is/There are

เรียนรู้เทคนิคที่จะช่วยให้การเขียน ผังมโนภาพ เป็นเรื่องง่ายๆ

  ผังมโนภาพ เป็นเทคนิคที่พัฒนาขึ้นจากจดบันทึกความคิด ความรู้ ความเข้าใจ น้อง ๆ หลายคนก็คงจะเคยได้รับโจทย์จากคุณครูให้เขียนแผนผังมโนภาพเพื่อทดสอบความเข้าใจ หลายคนอาจจะคิดว่าเป็นเรื่องยากที่จะเขียนออกมา แต่ทราบไหมคะว่าที่จริงแล้วมีวิธีการเขียนที่ง่ายมากแถมยังมีประโยชน์อีกด้วย จะเป็นอย่างไรไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   ความหมายของผังมโนภาพ   ผังมโนภาพเป็นแผนผังหรือแผนภาพที่แสดงความสัมพันธ์ของมโนทัศน์หรือความคิดรวบยอด ที่เริ่มจากความคิดหลัก ซึ่งทำหน้าที่เป็นชื่อเรื่อง แล้วแตกแขนงไปสู่ความคิดย่อย ๆ กระจายออกไปโดยรอบ ทำให้เกิดภาพเชื่อมโยงขององค์ความรู้เรื่องใดเรื่องหนึ่งในทุกแง่มุม   วิธีเขียนแผนผังมโนภาพ   ผังมโนภาพเป็นผังที่แสดงความสัมพันธ์ของสาระหรือความคิดต่าง

ที่มาและเรื่องย่อของ มหาชาติชาดก กัณฑ์มัทรี

มหาชาติชาดก หรือมหาเวสสันดรชาดก เป็นชาดกที่ได้ชื่อว่าเป็น มหาชาติ เพราะเป็นชาติสุดท้ายก่อนจะมาจุติเป็นพระพุทธเจ้า จากบทเรียนที่เคยเรียนรู้กันตอน ม.4 น้อง ๆ คงจะทราบกันดีอยู่แล้วว่ามหาชาตินี้มีด้วยกันทั้งหมด 13 กัณฑ์ โดยเรื่องที่เราจะได้เรียนกันเจาะลึกกันไปอีกในวันนี้ คือ กัณฑ์มัทรี นั่นเองค่ะ ถ้าน้อง ๆ อยากรู้แล้วว่าเป็นอย่างไร ก็ไปเรียนรู้พร้อมกันเลยค่ะ   ความเป็นมา     มหาชาติชาดกเป็นเรื่องราวในอดีตกาลของพระพุทธเจ้าที่เล่าให้กับเหล่าประยูรญาติฟังเมื่อครั้งเสด็จกลับเมืองและได้แสดงอภินิหาร

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1