ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

สารบัญ

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น คือระบบสมการที่มีดีกรีเป็นหนึ่ง ซึ่งก็คือเลขชี้กำลังของตัวแปรเป็นหนึ่งนั่นเอง ซึ่งในตอนมัธยมต้นน้องๆได้เรียนระบบสมการเชิงเส้น 2 ตัวแปรไปแล้ว

ระบบสมการเชิงเส้นสองตัวแปร เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

แล้วเราก็แก้สมการหาค่า x, y  (ซึ่งอาจจะมีคำตอบหรือไม่มีก็ได้)

แต่ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับระบบสมการเชิงเส้น n ตัวแปร นั่นก็คือน้องๆจะต้องหาคำตอบของตัวแปร n ตัวตัว ซึ่งการหาคำตอบนั้นมีหลายวิธีไม่ว่าจะเป็นการใช้เมทริกซ์ (ซึ่งน้องๆจะได้เรียนในบทความถัดๆไป) หรือการแก้สมการธรรมดาและในข้อสอบส่วนใหญ่จะเน้นให้น้องๆหาคำตอบในระบบสมการเชิงเส้นที่ไม่เกิน 3 ตัวแปร เพราะถ้าเกินกว่านั้นอาจจะใช้เวลาในการหาคำตอบมาก

เรามาดูนิยามของสมการเชิงเส้น n ตัวแปรกันค่ะ

 

บทนิยาม

สมการเชิงเส้น n ตัวแปร หมายถึง สมการที่เขียนอยู่ในรูป ระบบสมการเชิงเส้น โดยที่ \inline a_1,a_2,...,a_n,b\in \mathbb{R} และ \inline x_1,x_2,...,x_n เป็นตัวแปร

 

***สมการเชิงเส้น กับระบบสมการเชิงเส้นไม่เหมือนกันนะจ๊ะ***

โดยสมการเชิงเส้นคือ สมการเดี่ยวๆ 1 สมการ

แต่ระบบสมการเชิงเส้น คือ สมการหลายๆสมการ  เช่น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

ระบบสมการเชิงเส้น

 

การรตรวจคำตอบของระบบสมการคือ การแทนค่า \inline x_1,x_2,...,x_n ที่เราหาได้ลงไปในสมการทุกสมการในระบบแล้วทำให้สมการเหล่านั้นเป็นจริง และการแก้สมการนั้นสมการอาจจะใช้วิธีการกำจัดตัวแปร (เหมาะสำหรับสมการที่ไม่เกิน 3 ตัวแปร)

ตัวอย่างการแก้สมการ

 

ตัวอย่างต่อไปนี้จะใช้วิธีการกำจัดตัวแปรในการแก้สมการพร้อมกับตรวจสอบคำตอบของระบบสมการ

1.) แก้ระบบสมการพร้อมตรวจคำตอบ

\inline 2x-3y+z=8   ——-(1)

\inline -x+4y+2z=-4   —(2)

\inline 3x-y+2z=9   ——-(3)

 

วิธีแก้สมการ

สังเกตสมการที่ 2 และ 3 เราสามารถกำจัด z ได้ โดยการนำ (3) – (2) จะได้

\inline 3x-y+2z-(-x+4y+2z)   =  \inline 9-(-4)

\inline 4x-5y                                            =  \inline 13  ——–(4)

จะเห็นว่าสมการที่ 4 ไม่มีตัวแปร z แล้ว ดังนั้นตอนนี้เรามีสมการ 2 ตัวแปรแล้ว 1 สมการ

ต้องทำสมการ 2 ตัวแปรอีก 1 สมการร เพื่อจะนำมาแก้สมการ 2 ตัวแปรได้

และตอนนี้สมการที่เรายังไม่ได้ยุ่งเลยคือสมการที่ 1 ดังนั้น เราจะกำจัดตัวแปรตัวแปร z โดยใช้สมการที่ 1 ช่วย

นำสมการที่ 1 คูณด้วย 2 ทั้งสมการ จะได้

ระบบสมการเชิงเส้น                   = \inline 2(8)

\inline 4x-6y+2z                      = \inline 16    ——–(5)

จะสังเกตเห็นว่าสามารถกำจัดตัวแปร z ได้แล้ว โดยนำไป ลบ สมการรที่ 2 หรือ 3 ก็ได้

ในที่นี้จะนำไปลบกับสมการที่ 3 นั่นคิอ (5) – (3) จะได้

ระบบสมการเชิงเส้น   =  \inline 16-9

ระบบสมการเชิงเส้น                                             =  \inline 7  ————(6)

ตอนนี้เราได้ สมการ 2 ตัวแปรมาอีกหนึ่งสมการแล้ว ทีนี้เราก็สามารถทำการแก้สมการ 2 ตัวแปรได้แล้ว

\inline 4x-5y                                            =  \inline 13  ——–(4)

\inline x-5y                                              =  \inline 7  ———(6)

(4) – (6)  จะได้

ระบบสมการเชิงเส้น                       =  \inline 13-7

\inline 3x                                                     =  \inline 6

\inline x                                                       =  \inline 2

แทน x = 2 ใน (6) จะได้

\inline 2-5y=7  ดังนั้น y = -1

แทนค่า x = 2 และ y = -1 ในสมการที่ 1 จะได้

ระบบสมการเชิงเส้น

\inline 4+3+z=8

ดังนั้น z = 1

 

วิธีการตรวจคำตอบ

แทน ค่า x, y และ z ที่ได้จากการแก้ระบบสมการ ลงไปในสมการที่ 1, 2 และ 3

(1)    ระบบสมการเชิงเส้น   สมการเป็นจริง

(2)   \inline -2+4(-1)+2(1)=-2-4+2=-4  เป็นจริง

(3)   \inline 3(2)-(-1)+2(1)=6+1+2=9  เป็นจริง

 

สรุปหลักการแก้ระบบสมการ 3 ตัวแปร โดยวิธีกำจัดตัวแปร

  1. กำจัดตัวแปรให้เหลือ 2 สมการ 2 ตัวแปร
  2. แก้สมการ 2 ตัวแปร
  3. นำค่าตัวแปรที่หาได้ทั้งสองค่าแทนในสมการที่มีสามตัวแปร เพื่อหาค่าของตัวแปรที่เหลือ
  4. ได้ค่าครบทั้งสามค่าแล้ว นำไปตรวจคำตอบ 

 

วิดีโอทบทวนเรื่อง ระบบสมการเชิงเส้น 2 ตัวแปร

(ในระดับมัธยมต้น)

 

 

 

+1
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
NokAcademy_ ม5 Passive Modals

Passive Modals

สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ   Passive Modals คืออะไร   Passive Modals หรือ Modal Verbs in the Passive Voice คือ 

NokAcademy_Profile ม2 มารู้จักกับ (Connective Words)

 การใช้ตัวเชื่อม (Connective words)

Getting Started! มาเริ่มกันเลย   สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูจะพาไป ทบทวนงานเรื่อง  การใช้ตัวเชื่อม (Connective words) ที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อมในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay

การคูณเศษส่วนและจํานวนคละ

การคูณเศษส่วนและจํานวนคละ

บทความนี้จะพาน้อง ๆมารู้จักกับการคูณเศษส่วนและจำนวนคละ รวมถึงเทคนิคการคูณเศษส่วนและจำนวนคละที่ถูกต้องและรวดเร็ว หลังจากอ่านบทความนี้จบสิ่งที่จะได้รับก็คือหลักการคูณเศษส่วนและจำนวนคละประเภทต่าง ๆ การตัดทอนเศษส่วนจำนวนคละและตัวอย่างการคูณเศษส่วนจำนวนคละที่เข้าใจง่ายและเห็นภาพ สามารถนำไปใช้ได้จริงในห้องเรียน

มงคงสูตรคำฉันท์

รอบรู้เรื่องมงคลสูตรคำฉันท์ วรรณคดีพระพุทธศาสนาที่มาของหลักมงคล 38

บทนำ   สวัสดีน้อง ๆ ทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจอีกเช่นเคย สำหรับเนื้อหาวันนี้เราจะขอหยิบยกวรรณคดีพระพุทธศาสนามาเล่าให้ทุกคนได้ฟังกันบ้าง ซึ่งวรรณคดีที่เราได้เลือกมานั่นก็คือเรื่อง มงคลสูตรคำฉันท์ เชื่อว่าน้อง ๆ มัธยมปลายหลายคนคงจะคุ้นเคยกับเรื่องนี้กันดีอยู่แล้ว เพราะเป็นวรรณคดี ที่สอนบรรทัดฐานของการกระทำความดีตามวิถีของชาวพุทธ และเป็นที่มาของหลักมงคล 38 ประการด้วย ดีงนั้น เดี๋ยววันนี้เราจะพาน้อง ๆ ไปรู้จักกับวรรณคดีเรื่องนี้ให้มากขึ้น ถ้าพร้อมแล้วก็เตรียมตัวเข้าสู่เนื้อหากันได้เลย     ประวัติความเป็นมา เรื่อง

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

ลำดับ

ลำดับ

ลำดับ ลำดับ ( Sequence ) คือ เซตของจำนวนหรือตัวเลขที่เรียงกันเป็นระเบียบและมีเงื่อนไข เช่น ลำดับของจำนวนนับที่เพิ่มขึ้นทีละ 1 ก็จะสามารถเขียนได้เป็น 1, 2, 3, 4, … โดยตัวเลขเหล่านี้ เรียกว่า พจน์ ( Term ) เซตของลำดับจะเขีบยแทนด้วย และเราจะเรียก ว่าพจน์ที่

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้