อสมการค่าสัมบูรณ์

จากบทความที่ผ่านมา น้องๆได้ศึกษาเรื่องค่าสัมบูรณ์และการแก้อสมการไปแล้ว บทความนี้จะเป็นการเอาเนื้อหาของอสมการและค่าสัมบูรณ์มาปรับใช้ นั่นก็คือ เราจะแก้อสมการของค่าสัมบูรณ์นั่นเองค่ะ เรื่องอสมการค่าสัมบูรณ์น้องๆจะได้เจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลค่ะ ถ้าน้องๆเข้าใจหลักการและสมบัติของค่าสัมบูรณ์และอสมการน้องๆจะสามารถทำข้อสอบได้แน่นอน

สารบัญ

อสมการค่าสัมบูรณ์

อสมการค่าสัมบูรณ์ คือ อสมการที่อยู่ในรูปของค่าสัมบูรณ์ การแก้สมการค่าสัมบูรณ์จะคล้ายๆกับการแก้อสมการตัวแปรเดียว นั่นคือ คำตอบของสมการมีคำตอบได้หลายค่า ความแตกต่างก็คือ การแก้อสมการค่าสัมบูรณ์ต้องใช้สมบัติของค่าสัมบูรณ์มาช่วยด้วย

สามารถอ่านบทความเรื่องค่าสัมบูรณ์ได้ที่ >>>ค่าสัมบูรณ์<<<

ทฤษฎีบทที่ควรรู้เกี่ยวกับ อสมการค่าสัมบูรณ์

ให้ a และ b เป็นจำนวนจริงใดๆ และ c ≥ 0

1.)  อสมการค่าสัมบูรณ์  ก็ต่อเมื่อ  a^{2}< b^{2}

ที่มา

อสมการค่าสัมบูรณ์

 

2.)  \left | a \right |\leq \left | b \right |  ก็ต่อเมื่อ a^{2} \leq b^{2}

เช่น

\left | -2 \right | \leq \left | 3 \right |

อสมการค่าสัมบูรณ์

 

3.)  \left | a \right |< c  ก็ต่อเมื่อ  -c< a< c

ที่มาของทฤษฎีบท

อสมการค่าสัมบูรณ์

เช่น  \left | x \right | < 3  จะได้ว่า   -3< x< 3

 

4.)  อสมการค่าสัมบูรณ์  ก็ต่อเมื่อ  อสมการค่าสัมบูรณ์

ที่มาคล้ายกับข้อ 3 แค่เปลี่ยนเป็นเครื่องหมายมากกว่าหรือเท่ากับแค่นั้นจ้า

 

5.)  อสมการค่าสัมบูรณ์  ก็ต่อเมื่อ a> c  หรือ a<-c

ที่มาของทฤษฎีบท

อสมการค่าสัมบูรณ์

 

6.)  อสมการค่าสัมบูรณ์  ก็ต่อเมื่อ  a\geq c หรือ a\leq -c

 

ตัวอย่างอสมการค่าสัมบูรณ์

 

1.) จงแก้อสมการ \left |x-2 \right |< 5

อสมการค่าสัมบูรณ์

2.) จงแก้อสมการ \left | 2-7m \right |-1> 4

อสมการค่าสัมบูรณ์

3.) เขียนข้อความต่อไปนี้ให้อยู่ในรูปของอสมการค่าสัมบูรณ์

3.1) s อยู่ห่างจาก 1 อย่างน้อย 4 หน่วย

วิธีทำ  

เขียนเส้นจำนวนได้ดังนี้

s อยู่ห่างจาก 1 สามารถแปลได้อีกแบบคือ ผลต่างระหว่าง s กับ 1 มีค่าอย่างน้อย 4 หน่วย

อย่างน้อย 4 หน่วย หมายความว่า อาจจะลบกันแล้ว ได้ 4, 5, 6 หรืออาจจะมากกว่านี้ แสดงว่า ผลต่างของ s กับ 1 มีค่ามากกว่าหรือเท่ากับ 4 นั่นเอง

เขียนเป็นอสมการค่าสัมบูรณ์ได้ ดังนี้  \left | s-1 \right |\geq 4

 

3.2) k อยู่ห่างจาก 5 ในระยะ 2 หน่วย

วิธีทำ  k อยู่ห่างจาก 5 ในระยะไม่เกิน 2 หน่วย เขียนบนเส้นจำนวนได้ดังนี้

 

จาก ระยะห่างระหว่าง k กับ 5มีค่าไม่เกิน 2 หน่วย หมายความว่า ผลต่างของ k กับ 5 มีค่าได้มากสุดคือ 2

ดังนั้น เขียนเป็นอสมการค่าสัมบูรณ์ได้ ดังนี้  \left | k-5 \right |\leq 2

 

ทำไมถึงต้องติดค่าสัมบูรณ์ อย่าลืมว่าโจทย์นั้นพูดถึงระยะห่างบนเส้นจำนวน ซึ่งระยะต้องมีค่าเป็นบวกเสมอจึงต้องใส่ค่าสัมบูรณ์ไปด้วย

 

4.) จงหาค่า x เมื่อ 6 บวกด้วย 4 เท่าของ x แล้วค่าสัมบูรณ์ของผลรวมนั้นมีค่าไม่มากกว่า 1

วิธีทำ เงื่อนไขคือ ค่าสัมบูรณ์ของ 6 บวกด้วย 4เท่าของx มีค่าไม่มากกว่า 1

6 บวกด้วย 4เท่าของ x เขียนได้ดังนี้ 6 + 4x

มีค่าไม่มากกว่า 1 หมายความกว่า ต้องน้อยกว่าหรือเท่ากับ 1

ดังนั้นเราจะได้อสมการค่าสัมบูรณ์ คือ \left | 6-4x \right |\leq 1

แก้สมการหาค่า x จะได้

 

 

วิดีโอเกี่ยวกับการแก้อสมการค่าสัมบูรณ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

หลักการของอัตราส่วนที่เท่ากัน

หลักการของอัตราส่วนที่เท่ากัน

ในบทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

NokAcademy_Question ป5 การใช้ Question Words

การใช้ Question Words

  สวัสดีค่ะนักเรียนชั้น ป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ Question Words ที่รวมทั้งรูปแบบกริยาช่วยนำหน้าประโยค และรูปแบบ Wh-questions กันนะคะ พร้อมกันหรือยังเอ่ย ถ้าพร้อมแล้วก็ ไปลุยกันเลย   Question words ขึ้นต้นด้วยกริยาช่วย   ทบทวนกริยาช่วยสักนิด Helping verb หรือ Auxiliary verb

การให้เหตุผลแบบนิรนัย

การให้เหตุผลแบบนิรนัย

จากบทความที่แล้วเราได้เรียนเรื่องการให้เหตุผลแบบอุปนัยไปแล้ว บทความนี้พี่จะพูดถึงการให้เหตผลแบบนิรนัย ซึ่งแน่นอนว่ามักจะเจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลว่าจะทำไม่ได้ หากน้องได้อ่านบทความนี้แล้วน้องๆจะทำข้อสอบเกี่ยวกับการให้เหตุผลได้แน่นอนค่ะ

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์