การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

สารบัญ

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น

ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ

การบวกเมทริกซ์

เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน

เช่น

1.)  การบวก ลบ และคูณเมทริกซ์

2.)  การบวก ลบ และคูณเมทริกซ์

 

การลบเมทริกซ์

การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย คือ มิติของเมทริกซ์ที่จะนำมาบวกกันจะต้องเท่ากัน แต่ต่างกันตรงที่สมาชิกข้างในเมทริกซ์จะต้องนำมาลบกัน เช่น

 

1.) การบวก ลบ และคูณเมทริกซ์

2.) การบวก ลบ และคูณเมทริกซ์

สมบัติการบวกเมทริกซ์

  1. สมบัติปิดการบวก คือ เมทริกซ์ที่มีมิติเดียวกันบวกกันแล้วผลลัพธ์ยังเป็นเมทริกซ์เหมือนเดิมและมิติก็เท่าเดิมด้วย
  2. สมบัติการสลับที่การบวก  คือ ให้ A และ B เป็นเมทริกซ์  จะได้ว่า A +B = B +A
  3. สมบัติการเปลี่ยนหมู่ คือ (A + B) + C = A + (B + C)
  4. สมบัติการมีเอกลักษณ์การบวก ซึ่งเอกลักษณ์การบวกของเมทริกซ์ คือ เมทริกซ์ศูนย์ (สมาชิกทุกตำแหน่งเป็น 0) เขียนแทนด้วย \underbar{0}
  5. สมบัติการมีตัวผกผัน คือ ถ้า A เป็นเมทริกซ์ใดๆแล้วจะได้ว่า (-A) เป็นเมทริกซ์ผกผันของ A ซึ่งเมื่อนำ A มาบวกกับ -A แล้วจะได้เมทริกซ์ศูนย์

 

 

การคูณเมทริกซ์ ด้วยจำนวนจริง

การคูณเมทริกซ์ด้วยจำนวนจริงคือ การนำจำนวนจริงค่าหนึ่งคูณกับเมทริกซ์ ซึ่งวิธีการคูณแบบนี้น้องๆสามารถนำจำนวนจริงนั้นเข้าไปคูณกับสมาชิกในตำแหน่งในเมทริกซ์ (ต้องคูณทุกตัวแหน่ง) และเมทริกซ์นั้นจะเป็นกี่มิติก็ได้ เช่น

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยจำนวนจริง

ให้ A, B เป็นเมทริกซ์ที่มีมิติ \inline m\times n และ c, d เป็นจำนวนจริง

  1. (cd)A = c(dA) = d(cA)  เช่น การบวก ลบ และคูณเมทริกซ์
  2. c(A + B) = cA + cB
  3. (c + d)A = cA + dA
  4. 1(A) = A และ -1(A) = -A

การคูณเมทริกซ์ด้วยเมทริกซ์

เมทริกซ์ที่จะคูณกันได้ต้องมีหลักเกณฑ์ดังนี้

1.) จำนวนหลักของเมทริกซ์ตัวหน้าต้อง เท่ากับ จำนวนแถวของเมทริกซ์ตัวหลัง

2.) มิติของเมทริกซ์ผลลัพธ์จะเท่ากับ จำนวนแถวของตัวหน้าคูณจำนวนหลักของตัวหลัง

เช่น

การบวก ลบ และคูณเมทริกซ์

วิธีการคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยเมทริกซ์

1.) สมบัติการเปลี่ยนหมู่  

ถ้า A, B และ C เป็นเมทริกซ์ที่สามารถคูณติดต่อกันได้ จะได้ A(BC) = (AB)C

2.) สมบัติการมีเอกลักษณ์

เอกลักษณ์การคูณของเมทริกซ์ คือ \inline I_n 

น้องๆสามารถทำความรู้จักกับเมทริกซ์เอกลักษณ์เพิ่มเติม ได้ที่ >>> เมทริกซ์เอกลักษณ์

**เมทริกซ์ที่มีเอกลักษณ์ คือ เมทริกซ์จัตุรัส

3.) สมบัติการรแจกแจง

(A + B)C = AC + BC

A(B +C) = AB + AC

แต่!! เมทริกซ์จะมีสมบัติการแจกแจง เมื่อ A + B, B + C, AB, AC, BC สามารถหาค่าได้

 

สิ่งที่น้องๆต้องรู้เกี่ยวกับการคูณเมทริกซ์ด้วยเมทริกซ์

1.) ไม่มีสมบัติการสลับที่การคูณ นั่นคือ AB ไม่จำเป็นต้องเท่ากับ BA เช่น 

การบวก ลบ และคูณเมทริกซ์

2.) เมื่อ AB = BA จะได้

  1. การบวก ลบ และคูณเมทริกซ์
  2. \inline (A-B)^2=A^2-2AB+B^2
  3. \inline A^2-B^2=(A+B)(A-B)

3.) ถ้า \inline AB=\underbar{0}  ไม่จำเป็นที่ \inline A\neq \underbar{0} หรือ \inline B\neq \underbar{0}

4.) ถ้า \inline AB=AC โดยที่ \inline A\neq \underbar{0} ไม่จำเป็นที่ \inline B=C

 

 

 

 

+2
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Share on twitter
Share on facebook
ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

มงคลสูตรคำฉันท์ ตัวบท

ศึกษาตัวบทที่น่าสนใจในวรรณคดีเรื่องมงคลสูตรคำฉันท์

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาพบกับบทเรียนภาษาไทยที่น่าสนใจกันอีกเช่นเคย ต่อจากครั้งก่อนที่เราได้เรียนประวัติความเป็นมา เรื่องย่อ และลักษณะคำประพันธ์ของวรรณคดีพระพุทธศาสนาเรื่องมงคลสูตรคำฉันท์ไปแล้ว วันนี้เราจะมาเรียนกันต่อในส่วนที่เป็นตัวบทสำคัญ โดยจะยกตัวบทที่มีความน่าสนใจพร้อมกับถอดความมงคลทั้ง 38 ประการว่ามีอะไรบ้าง  ดังนั้น ถ้าน้อง ๆ คนไหนพร้อมแล้วก็มาเข้าสู่เนื้อหาไปพร้อม ๆ กันเลย     ประวัติความเป็นมา สำหรับประวัติความเป็นมาของเรื่องมงคลสูตรคำฉันท์มาจากการที่พระบาทสมเด็จพระมงกุฏเกล้าเจ้าอยู่หัว หรือรัชกาลที่ 6 ทรงเลื่อมใสในพระพุทธศาสนาจึงได้ถอดความอุดมมงคล 38

เส้นตรง

เส้นตรง

เส้นตรง เส้นตรง มีสมการรูปแบบทั่วไปคือ Ax + By + C = 0 และสมการรูปแบบมาตรฐานของเส้นตรงจะเขียนอยู่ในรูป y = mx + C ซึ่งจะอยู่ในหัวข้อ “สมการเส้นตรง” เส้นตรงหนึ่งเส้นประกอบไปด้วยจุดหลายจุด ซึ่งจุดเหล่านี้จะทำให้เราสามารถหาความชันได้ และเมื่อเราทราบความชันก็จะสามารถหาสมการเส้นตรงได้นั่นเอง ความชันของเส้นตรง ความชันของเส้นตรง ส่วนใหญ่นิยมใช้ m

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

กาพย์ยานี 11

เรียนรู้เรื่องกาพย์ยานี 11 พร้อมเคล็ดลับการแต่งกาพย์แบบง่ายดาย

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งกับบทเรียนภาษาไทยที่ได้ทั้งสาระความรู้ และความสนุกไปพร้อม ๆ กัน เชื่อว่า น้อง ๆ หลายคนคงเคยได้อ่านหรือได้เรียนเกี่ยวกับการแต่งกาพย์กลอนกันมาบ้างแล้ว ซึ่งหนึ่งในนั้นก็คือ ‘กาพย์ยานี 11’ และต้องบอกว่ากาพย์ชนิดนี้มีวรรณคดีหลาย ๆ เรื่องที่ใช้ในการแต่งบทประพันธ์ หรือเราเองก็มักจะได้เริ่มการแต่งกาพย์ชนิดนี้ก่อนเป็นอันดับแรก ๆ ด้วยรูปแบบของฉันทลักษณ์ที่เข้าใจง่ายไม่ซับซ้อน ไม่ได้กำหนดสระหรือคำเป็นคำตายแต่อย่างใด เพราะฉะนั้น เพื่อเป็นการทบทวน และเพิ่มเติมความรู้ให้กับน้อง

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้