กราฟของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง

เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์ r ได้ดังนี้

กราฟของความสัมพันธ์

 

การเขียนกราฟความสัมพันธ์แบบบอกเงื่อนไข

รูปแบบการเขียนแบบบอกเงื่อนไขจะเป็นเหมือนกับการเขียนเซตแบบบอกเงื่อนไข เช่น A = {x : x ∈ R} และ B = {y : y ∈ I^{+}} เป็นต้น เรามักจะใช้ในกรณีที่ไม่สามารถเขียนแจกแจงสมาชิกทั้งหมดได้ กรณีที่ไม่สามารถแจกแจงสมาชิกได้ทั้งหมด เช่น x เป็นจำนวนจริง จะเห็นได้ว่าจำนวนจริงนั้นมีเยอะมาก บอกไม่หมดแน่ๆ จึงต้องเขียนแบบบอกเงื่อนไขนั่นเอง

เรามาดูตัวอย่างการเขียนกราฟกันค่ะ

ให้ A = {x : x ∈ R} และ B = {y : y ∈ R}

กำหนด r ⊂ A × B และ r = {(x, y) ∈ A × B : y = x²}

ขั้นที่ 1 ให้ลองแทนค่าของจำนวนเต็มบวก x ลงในสมการ y = x²  ที่ต้องแทน x เป็นจำนวนเต็มบวก เพราะเงื่อนไขในเซต A นั่นเอง

แทน x = 0, 1, 2, 3, 4

x = 0 ; y = 0

x = 1 ; y = (1)² = 1

x = 2 ; y = (2)² = 4

x = 3 ; y = (3)² = 9

x = 4 ; y = (4)² = 16

ขั้นที่ 2 เมื่อเราแทนค่า และได้ค่า y มาแล้ว ให้เราเขียนคู่อันดับที่เราได้จากขั้นที่ 1

จะได้คู่อันดับ ดังนี้ (0, 0), (1, 1), (2, 4), (3, 9), (4, 16)

**คู่อันดับที่ได้นี้เป็นเพียงสมาชิกบางส่วนของ r นะคะ เนื่องจากสมาชิกของ r เยอะมาก เราเลยยกตัวอย่างมาบางส่วนเพื่อที่จะเอาไปเขียนกราฟ**

ขั้นที่ 3 นำคู่อันดับที่ได้จากขั้นที่ 2 มาเขียนกราฟ โดยแกนตั้งคือ y แกนนอนคือ x

วิธีการเขียนกราฟคือ นำคู่อันดับแต่ละคู่มามาเขียนบนกราฟ แล้วลากเส้นเชื่อมจุดแต่ละจุด

กราฟของความสัมพันธ์

กราฟข้างต้นเป็นการแทนค่า x ด้วยจำนวนจริงบางส่วน

ถ้าเราแทนค่า x ด้วยจำนวนจริงทั้งหมดจะได้กราฟ ดังนี้

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ในรูปแบบเชิงเส้น

เมื่อให้ x, y เป็นจำนวนจริงใดๆ และ y = ax + b ซึ่งเป็นสมาการเส้นตรง(สมาการเชิงเส้น)

ให้ r_1 = {(x, y) : y = x}

จะได้กราฟ r ดังรูป

น้องๆสามารถลองแทนจุดบางจุดและลองวาดกราฟดู จะได้กราฟตามรูปข้างบนเลยค่ะ

ถ้าให้ r_2 = {(x, y) : y = -x}

จะได้กราฟ ดังรูป

 

ถ้าให้ r_3 = {(x, y) : y = 2x + 1}

จะได้กราฟดังรูป

กราฟของความสัมพันธ์

 

กราฟของความสัมพันธ์ ในรูปแบบกำลังสอง

ให้ x, y เป็นจำนวนจริงใดๆ สมการ y = ax² + bx +c เป็นสมการกำลังสอง ซึ่งเป็นสมการพาราโบลาที่เราเคยเรียนมาตอนม.ต้นนั่นเอง

ให้ r_1 = {(x, y) : y = 2x²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะเห็นว่ากราฟที่ได้เป็นรูปพาราโบลาหงาย มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_2 = {(x, y) : x = y²}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

เห็นว่ากราฟที่ได้คือ พาราโบลาตะแคงขวา มีจุดวกกลับที่จุด (0, 0)

ถ้าให้ r_3 = {(x, y) : y = -x² + 2x + 5}

เมื่อนำมาเขียนกราฟ จะได้กราฟดังรูป

จะได้กราฟพาราโบลาคว่ำ มีจุดวกกลับที่จุด (1, 6)

 

**น้องๆสามารถแทนค่า x เพื่อหาค่า y แล้วนำคู่อันดับที่ได้มาลองวาดกราฟดูจะได้กราฟตามรูปเลยนะคะ**

 

กราฟของความสัมพันธ์ ในรูปแบบค่าสัมบูรณ์

 

ให้ x, y เป็นจำนวนจริงใดๆ และ y =\left | x \right |

กำหนดให้ r = {(x, y) : y =\left | x-1 \right |}

จะได้กราฟ ดังรูป

 

จากกราฟที่น้องๆเห็นทั้งหมดนี้ น้องๆอาจจะไม่ต้องรู้ก็ได้ว่า สมการแบบนี้กราฟต้องเป็นแบบไหน ในบทนี้ อยากให้น้องๆได้ฝึกแทนจุดบนกราฟโดยการแก้สมการหาค่า x, y แล้วนำมาวาดบนกราฟ 

ข้อสำคัญคือ น้องๆจะลากเส้นเชื่อมจุดได้ต้องมั่นใจว่าทุกจุดที่เส้นกราฟผ่านอยู่ในเงื่อนไขที่กำหนดให้ ถ้าเซตที่กำหนดให้เป็นเซตจำกัดอาจจะไม่สามารถลากเส้นแบบนี้ได้ ดังรูปแรกในบทความนี้นั่นเองค่ะ

 

วิดีโอ กราฟของความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

รากที่สาม

รากที่สาม

ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ พูดอย่างไรให้ถูกต้อง

  คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ถือเป็นเรื่องสำคัญ ที่น้อง ๆ หลายคนอาจจะต้องพบเจอถ้าหากว่านับถือศาสนาพุทธ เพราะว่าเราอาจมีโอกาสได้สนทนากับพระระหว่างทำบุญก็ได้ วันนี้เราจะมาเรียนรู้คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์กันนะคะว่าแตกต่างจากคำราชาศัพท์สำหรับราชวงศ์และสุภาพชนทั่วไปอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ใช้อย่างไร     แม้คำว่าราชาศัพท์ จะสามารถแปลตรงตัวได้ว่าเป็นถ้อยคำที่ใช้กับพระมหากษัตริย์ แต่ในปัจจุบันนี้คำราชาศัพท์ยังครอบคลุมไปถึงพระบรมวงศานุวงศ์ พระภิกษุสงฆ์ และสุภาพชน หรือเรียกอีกนัยว่าคำสุภาพ สำหรับคำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์จะต่างกับราชวงศ์และสุภาพชน และยังขึ้นอยู่กับสมณศักดิ์ของพระสงฆ์อีกด้วย โดยสามารถเรียงลำดับได้ดังนี้

คำเชื่อม Conjunction

การใช้คำสันธาน(Conjunctions)

สวัสดีค่ะนักเรียนชั้นม.3 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “การใช้คำสันธาน(Conjunctions)“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด คำสันธาน(Conjunctions)คืออะไร   คำสันธาน (Conjunctions) คือ คำที่ใช้เชื่อมระหว่างประโยคต่อประโยค คำต่อคำ หรือระหว่างกริยาต่อกริยา และอื่นๆ เช่น for, and, or, nor, so, because, since ดังตัวอย่างด้านล่างเลยจ้า ตัวอย่างเช่น เชื่อมนามกับนาม

การอ่านออกเสียงคำควบกล้ำ

การอ่านออกเสียงคำควบกล้ำ อ่านอย่างไรให้ถูกต้อง

ในปัจจุบัน ไม่ว่าจะชมสื่อต่าง ๆ หรือพูดคุยในชีวิตประจำวัน เราก็มักจะเจอคนที่อ่านออกเสียงคำควบกล้ำไม่ชัดอยู่บ่อยครั้ง โดยเฉพาะคำที่เป็น ร หรือ ล ทำให้การสื่อสารอาจผิดพลาดไปเลยก็ได้ ดังนั้น การอ่านออกเสียงคำควบกล้ำ ให้ถูกต้องจึงถือเป็นเรื่องที่สำคัญอย่างมาก บทเรียนในวันนี้ นอกจากน้อง ๆ จะได้เรียนรู้เกี่ยวกับคำควบกล้ำว่ามีอะไรบ้างแล้ว ก็ยังจะได้รู้วิธีอ่านออกเสียงอีกด้วย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำควบกล้ำ คำควบกล้ำ (อักษรควบ) หมายถึง พยัญชนะสองตัวเขียนเรียงกันอยู่ต้นพยางค์และใช้สระเดียวกัน

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ

โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ บทความนี้ ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอัตราส่วน สัดส่วน และร้อยละ ซึ่งการแก้โจทย์ปัญหานั้น น้องๆจะต้องอ่านทำความเข้าใจกับโจทย์ให้ละเอียด และพิจารณาอย่างรอบคอบว่าโจทย์กำหนดอะไรมาให้บ้างและโจทย์ต้องการให้หาอะไร จากนั้นจะสามารถหาค่าของสิ่งที่โจทย์ต้องการได้โดยใช้ความรู้เรื่องการคูณไขว้ สัดส่วน และร้อยละ ก่อนจะเรียนรู้เรื่องนี้ น้องๆจำเป็นต้องมีความรู้ในเรื่อง สัดส่วน เพิ่มเติมได้ที่  ⇒⇒ สัดส่วน ⇐⇐ โจทย์ปัญหาเกี่ยวกับสัดส่วน ตัวอย่างที่ 1  อัตราส่วนของอายุของนิวต่ออายุของแนน เป็น 2

ความน่าเชื่อถือของสื่อที่ฟัง

ฟังอย่างไรให้ได้สาระประโยชน์ดี ๆ ด้วยวิธีวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟัง

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้อนรับเข้าสู่เนื้อหาในบทเรียนภาษาไทยกันอีกครั้ง สำหรับบทเรียนในวันนี้ต้องบอกว่ามีประโยชน์มาก ๆ และเราควรจะต้องศึกษาไว้เพื่อนำไปใช้ในการฟัง หรือคัดกรองสิ่งต่าง ๆ รอบตัวที่เรารับฟังมาให้มากขึ้น ซึ่งเราจะพาน้อง ๆ มาฝึกฝนการวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟังกัน เพราะในปัจจุบันเราสามารถรับสารได้หลากหลายรูปแบบมีทั้งประโยชน์ และโทษ ดังนั้น เราจึงต้องมีทักษะนี้ติดตัวไว้แยกแยะว่าสื่อนั้นมีความน่าเชื่อถือมากน้อยแค่ไหน ถ้าน้อง ๆ พร้อมแล้วเรามาเริ่มเรียนกันเลย   ความหมายของความน่าเชื่อถือ และสื่อ ความน่าเชื่อถือ หมายถึง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1