กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y
tucksaga
tucksaga
เรียนออนไลน์ คณิตศาสตร์

สารบัญ

กราฟที่ได้จากจุดที่เรียงอยู่ในแนวเส้นตรงเดียวกันความสัมพันธ์ของจำนวนเต็มทั้งสองจึงเป็นความสัมพันธ์เชิงเส้นและแสดงเป็น กราฟของสมการเชิงเส้นสองตัวแปร ซึ่งการหาจุดตัดของแกน x และแกน yจะช่วยในการเขียนกราฟได้ง่ายขึ้น

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เราสามารถลากเส้นตรงผ่านจุดสองจุดใด ๆ ที่แตกต่างกันได้เพียงเส้นเดียวเท่านั้น ดังนั้นเพื่อความสะดวกรวดเร็วในการเขียนกราฟเส้นตรง เราจึงเลือกคู่อันดับสองคู่อันดับที่สอดคล้องกับสมการเชิงเส้นสองตัวแปรที่กำหนดให้ และเขียนกราฟของคู่อันดับทั้งสองบนระนาบแล้วลากเส้นตรงผ่านจุดสองจุดนั้น เส้นตรงนั้นจะเป็นกราฟของสมการเชิงเส้นสองตัวแปรที่กำหนดให้

จุดตัดบนกราฟสมการเชิงเส้นสองตัวแปร

 กราฟแสดงความสัมพันธ์ของปริมาณสองปริมาณในวิชาพีชคณิตนั้น จะมีแกนนอนหรือเรียกว่าแกน x และแกนตั้งหรือเรียกว่าแกน y บริเวณที่เส้นกราฟซึ่งแสดงข้อมูลตัดผ่านแกนจะเรียกว่า จุดตัด

จุดตัดแกน x และจุดตัดแกน y

หากเส้นกราฟตัดผ่านแกน y จะเรียกว่า จุดตัดแกน y และหากเส้นกราฟตัดผ่านแกน x จะเรียกว่า จุดตัดแกน x การหาจุดตัดแกน x ตามหลักพีชคณิตจะหาได้ง่ายหรือยากขึ้นอยู่กับประเภทของสมการ โดยการหาจุดตัด จะสามารถนำไปใช้ในการสร้างกราฟของสมการเชิงเส้นสองตัวแปร หรือที่เรียกกันว่ากราฟเส้นตรงได้ง่ายขึ้น

การหาคู่อันดับ

 ในการหาคู่อันดับที่สอดคล้องกับสมการเชิงเส้นสองตัวแปร เพื่อความสะดวกในการคำนวณ อาจหาคู่อันดับสองคู่อันดับ โดยกำหนดค่า x = 0 แล้วหาค่า y จากสมการ และกำหนดค่า y = 0 แล้วหาค่า x จากสมการ

ตัวอย่าง จงเขียนกราฟของสมการ 2x + y = 3

จุดตัด

จะได้กราฟของสมการ 2x + y = 3 เป็นดังนี้

กราฟเส้นตรง

 

ตัวอย่าง จงเขียนกราฟของสมการ \frac{x}{2} – y + 1=0

กราฟสมการเชิงเส้นสองตัวแปร

จะได้กราฟของสมการ \frac{x}{2} – y + 1 = 0 เป็นดังนี้

จุดตัดบนกราฟ

คลิปวิดีโอตัวอย่างเรื่องกราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การบวกและการลบเอกนาม

การบวกและการลบเอกนาม บทความนี้จะทำให้น้องๆ รู้จักเอกนามและเข้าใจวิธีการบวกลบเอกนามได้อย่างง่ายดาย ซึ่งได้รวบรวมตัวอย่างการบวกและการลบเอกนามมานำเสนออกในรูปแบที่เข้าใจง่าย ทำให้น้องๆสนุกกับการเรียนคณิตศาสตร์ ซึ่งเนื้อหาในบทความนี้เป็นเนื้อหาวิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 5 เอกนาม เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยเลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก ค่าคงตัว คือ ตัวเลข ตัวแปร คือ สัญลักษณ์ของข้อมูลที่เปลี่ยนแปลงได้ มักเขียนอยู่ในรูปสัญลักษณ์ x, y เอกนาม ประกอบด้วย 2

Comparison of Adjectives

การใช้ประโยค Comparative Adjectives

สวัสดีค่ะนักเรียนชั้นม.3 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง การใช้ ประโยค ประโยค Comparative Adjectives หรือ อีกชื่อหนึ่งคือ Comparison of Adjectives: การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลยจร้า   คำศัพท์สำคัญ: Comparative VS Comparison comparative (Adj.)

should have

I Should Have Done It! โครงสร้างประโยค “รู้งี้”

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับหลักไวยากรณ์เล็กๆ น้อยๆ ที่ได้ใช้ประโยชน์มากๆ นั่นคือเรื่องการใช้ should have + past participle นั่นเองครับ จะเป็นอย่างไรลองไปดูกันเลยครับ

การใช้ตัวเชื่อม (Connective words): First,… Second,… Third,… Fourth,… Finally,…

 การใช้ตัวเชื่อม (Connective words) สวัสดีค่ะนักเรียน ม.2 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อม (connective words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ 

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การแจกแจงความถี่ของข้อมูล (Frequency distribution)              การแจกแจงความถี่ของข้อมูล  เป็นวิธีการทางสถิติอย่างหนึ่งที่ใช้ในการจัดข้อมูลที่มีอยู่ให้เป็นหมวดหมู่ เพื่อความสะดวกในการนำเสนอและการวิเคราะห์ข้อมูลเหล่านั้น  มี 2 ลักษณะ คือ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น และ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น การสร้างตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น เหมาะสำหรับข้อมูลที่มีค่าจาการสังเกตไม่มากนักหรือไม่ซับซ้อน  1.