สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย

สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม

สมบัติการสลับที่

  1. สมบัติการสลับที่สำหรับการบวก

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b = b + a

เช่น 3 + 5 = 5 + 3

จะเห็นว่า 3 + 5 = 8 และ  5 + 3 = 8

ดังนั้น ไม่ว่าสลับที่ของการบวกอย่างไร ผลลัพธ์ที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การลบ เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 1  จงหาผลบวกต่อไปนี้
1)  13 + 5 = 5 + 13 = 18
2)  2 + (-8) = (-8) + 2 = -6
3)  (-10) + 3 = 3 + (-10) = -7
4)  (-9) + (-4) = (-4) + (-9) = -13

  1. สมบัติการสลับที่สำหรับการคูณ

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a x b = b x a

เช่น 3 x 5 =  5 x 3

จะเห็นว่า 3 x 5 = 15 และ  5 x 3 = 15

ดังนั้น ไม่ว่าสลับที่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การหาร เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 2  จงหาผลคูณต่อไปนี้
1)  5 x 4 = 4 x 5 = 20
2)  (-10) x 3 = 3 x (-10) = -30 (ลบคูณบวกได้ลบ)
3)  5 x (-8) = (-8) X 5 = -40 (บวกคูณลบได้ลบ)

4)  (-7) x (-5) = (-5) x (-7) = 35 (ลบคูณลบได้บวก)

ในทางคณิตศาสตร์ สมบัติการสลับที่ของจำนวนเต็ม คือ การเปลี่ยนแปลงตำแหน่งของจำนวนเต็ม โดยไม่ทำให้ผลลัพธ์สุดท้ายเปลี่ยนแปลง

สรุป  เครื่องหมายเหมือนกันคูณกันได้บวก  เครื่องหมายต่างกันคูณกันได้ลบ

สมบัติการเปลี่ยนหมู่

  1. สมบัติการเปลี่ยนหมู่สำหรับการบวก

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a + b) + c = a + (b + c)

เช่น (53) + 2 = 5(3 + 2)

จะเห็นว่า (53) + 2 = 10 และ   5 + (3 + 2) = 10

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการบวกอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 3  จงหาผลบวกต่อไปนี้
1)  (15 + 5) + 8 = 15 + (5 + 8) = 28
2)  [10 + (-7)] + 9 = 10 + [(-7) + 9] = 12
3)  [(-16) + 6] + 5 = (-16) + (6+5) = -5
4)  [15 + (-3)] + (-8) = 15 + [(-3) + (-8)] = 4
5)  [(-20) + (-10)] + 5 = (-20) + [(-10) + 5] = -25                                                                     

2. สมบัติการเปลี่ยนหมู่สำหรับการคูณ

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a x b) x c = a x (b x c)

เช่น (53) x 2 = 30 = 5(3 x 2)

จะเห็นว่า (53) x 2 = 30  และ  5 x (3 x 2) = 30

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 4  จงหาผลคูณต่อไปนี้
1)  (10 x 2) x 3 = 10 x (2 x 3) = 60
2)  [(-8) x 5] x 2 = (-8) x (5 x 2) = -80
3)  [4 x (-5)] x 5 = 4 x [(-5) x 5 = -100
4)  [3 x (-4)] x (-2) = 3 x [(-4) x (-2)] = 24
5)  [(-4) x (-2)] x 5=(-4) x [(-2) x 5] = 40

สมบัติการเปลี่ยนหมู่ของจำนวนสามจำนวนที่นำมาคูณกัน จะคูณจำนวนที่หนึ่งกับจำนวนที่สอง หรือคูณ
จำนวนที่สองกับจำนวนที่สามก่อน แล้วจึงคูณกับจำนวนที่เหลือ ผลคูณย่อมเท่ากัน

สมบัติการแจกแจง

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว a x (b + c) = (a x b) + (a x c) และ  

( b + c) x a = (b x a) + (c x a

เช่น 2 x (53) = 16 = (2 x 5) + (2 x 3)

จะเห็นว่า 2 x (53) = 16 และ (2 x 5) + (2 x 3) = 16 

ดังนั้น สมบัติการแจกแจงจึงเป็นความสัมพันธ์ระหว่างการบวกและการคูณ

ตัวอย่างที่ 5  จงหาผลคูณต่อไปนี้
1)   2 x (5 + 7)
= (2 x 5) + (2 x 7)
= 10 + 14
= 24
2)  (-3) x (4 + 6)
= [(-3) x 4] + [(-3) × 6]
= (-12) + (-18)
= -30
3)  (-5) x [(-2) + 8)=[(-5) x (-2)] + [(-5) x 8]
= 10 + (-40)
= -30
4)  (7+3) x 5
= (7X5) + (3×5)                                                                                                                                                                           = 35 + 15                                                                                                                                                                                     = 50                                                                                                                             
5)  [(-9) + 3)] x (-3)                                                                                                                                                                    = [(-9) x (-3)] + [3 x (-3)]
= 27 + (-9)
= 18

สมบัติการแจกแจงจะเป็นการคูณแจงแจงจำนวนเข้าไปในวงเล็บ ซึ่งจะต้องคูณจำนวนทุกจำนวนที่อยู่ในวงเล็บ

สมบัติของหนึ่งและศูนย์

สมบัติของหนึ่ง

–  การคูณจำนวนใดๆ ด้วยหนึ่ง หรือหนึ่งคูณจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนนั้นเสมอ

เช่น 87 x 1 = 87

หรือ 1 x 87 = 87

ตัวอย่างที่ 6 จงหาผลลัพธ์ต่อไปนี้
1)   1 x 14 = 14
2)   (-5) x 1 = -5
3)   (-1) x 1 = -1
4)   1 x (-16) = -16
5)   27x (-1) = -27
6)   (-34) x 1 = -34

–  การหารจำนวนใดๆ ด้วยหนึ่งจะได้ผลหารเท่ากับจำนวนนั้นเสมอ

เช่น 45 ÷ 1 = 45

หรือ  \frac{45}{1}  = 45

สมบัติของศูนย์

–  การบวกจำนวนใดๆ ด้วยศูนย์ หรือการบวกศูนย์ด้วยจำนวนใดๆ จะได้ผลบวก เท่ากับจำนวนนั้นเสมอ

เช่น 87 + 0 = 87

หรือ  0 + 87  = 87

ตัวอย่างที่ 7  จงหาผลบวกต่อไปนี้
1)  12 + 0 = 12
2)  0 + (-23) = -23
3)  (-27) + 0 = -27
4)  0 + 0 = 0

–  การคูณจำนวนใดๆ ด้วยศูนย์ หรือการคูณศูนย์ด้วยจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนศูนย์ (ศูนย์คูณอะไรก็ได้ศูนย์)

เช่น 235 x 0 = 0

หรือ  0 x 235  = 0

ตัวอย่างที่ 8 จงหาผลคูณต่อไปนี้
1)  12 X 0 = 0
2)  0 x (-23) = 0
3)  (-27) × 0 = 0
4)  0 x 0 = 0

–  การหารศูนย์ด้วยจำนวนใดๆ ที่ไม่ใช่ศูนย์ จะได้ผลหารเท่ากับศูนย์

เช่น 0 ÷ 95 = 0

หรือ \frac{0}{95}  = 45

ตัวอย่างที่ 9 จงหาผลหารต่อไปนี้
1)  0 ÷ 23 = 0
2)  0 ÷ (-23) = 0

–  ถ้าผลคูณของสองจำนวนใดเท่ากับศูนย์ จำนวนใดจำนวนหนึ่งอย่างน้อยหนึ่งจำนวนต้องเท่ากับศูนย์

เช่น a x b = 0

จะได้ว่า a  = 0 หรือ b = 0

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 10 จงหาผลคูณของ (-5)(6)(-2)
วิธีทำ (-5)(6)(-2) = [(-5)x6] x (-2)
                          =(-30) x (-2)
                          = 60                                                                                                                                                                        ดังนั้น  (-5)(6)(-2) = 60

ตัวอย่างที่ 11 จงหาผลคูณของ 999 X 5
วิธีทำ 999 x 5 = (1000 – 1) x 5
                       = [1000 + (-1)] x 5
                       = (1000 x 5)+[(-1) x 5]
                       = 5000 + (-5)
                        = 4,995
ดังนั้น  999 x 5 = 4,995

จากตัวอย่างทั้งหมด น้องๆจะเห็นว่ามีสมบัติการบวกและการคูณ แต่จะไม่มีสมบัติการลบและการหาร เพราะว่า การลบจำนวนเต็มก็คือ การบวกด้วยจำนวนเต็มลบ ซึ่งเราจะเรียกว่าสมบัติการบวก ส่วนการหารจำนวนเต็มคือ การนำเศษส่วนมาคูณ เราเรียกว่าสมบัติการคูณ

เมื่อน้องได้เรียนรู้เรื่อง สมบัติของจำนวนเต็ม ซึ่งสมบัติเหล่านี้จะนำมาใช้ในการบวก ลบ คูณ และหาร จำนวนเต็ม ซึ่งน้องๆจะต้องฝึกทำโจทย์อย่างสมำ่เสมอ จึงจะทำให้น้องๆสามารถคำนวณค่าต่างๆได้อย่างรวดเร็วและเป็นระบบ

คลิปวิดีโอ สมบัติของจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี สมบัติของจำนวนเต็ม  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย สมบัติของจำนวนเต็ม และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

คำไทยที่มักอ่านผิด มีคำใดบ้างที่เราควรรู้?

การอ่านผิด เป็นปัญหาในการอ่านออกเสียง มีสาเหตุมาจากอ่านไม่ออก หรือ อ่านผิด หลายคนอาจมองว่าไม่สำคัญ แต่รู้หรือไม่คะ ว่าการอ่านนั้นมีความสำคัญอย่างมาก โดยเฉพาะหากเราอ่านผิด ก็จะทำให้ความหมายของคำนั้นผิดเพี้ยนไป หรือกลายเป็นคำที่ไม่มีความหมายไปเลยก็ได้ บทเรียน คำไทยที่มักอ่านผิด ในวันนี้ เราจะพาน้อง ๆ ไปเรียนรู้การอ่านสะกดคำที่ถูกต้อง กับคำในภาษาไทยที่คนส่วนใหญ่มักอ่านผิดกันบ่อย ๆ จะมีคำใดบ้าง ไปเรียนรู้พร้อมกันเลยค่ะ   คำไทยที่มักอ่านผิด   ลักษณะของการอ่านผิดมีดังนี้

NokAcademy_Infinitives after verbs

Infinitives after verbs

Hi guys! สวัสดีค่ะนักเรียนม.5 ที่รักทุกคนวันนี้เราจะไปดูการใช้ Infinitives after verbs กันเด้อ ถ้าพร้อมแล้วก็ไปลุยกันโลดจร้า Let’s go!   ทบทวนความหมายของ “Infinitive”   Infinitive คือ   กริยารูปแบบที่ไม่ผัน ไม่เติมอะไรใดๆเลย ที่นำหน้าด้วย to (Infinitive with “to” หรือ

Like & Dislike ในการพูดถึงความชอบ และการให้ข้อมูลเกี่ยวกับตนเอง

สวัสดีน้องๆ ป. 5 ทุกคนนะครับผม วันนี้เราจะมาลองฝึกใช้ประโยคที่เอาไว้บอกความชอบของเรากัน พร้อมกับการให้ข้อมูลเกี่ยวกับตัวเองเบื้องต้นครับ ถ้าพร้อมแล้วไปลุยกันเลย

Profile Telling Time

“บอกเวลาในภาษาอังกฤษ (Time in English) ”

Hi guys! สวัสดีค่ะนักเรียนชั้น ป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการ “บอกเวลาในภาษาอังกฤษ (Telling Time in English) ” กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย  บทนำ ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ  ดังตัวอย่างดังต่อไปนี้

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1