สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย

สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม

สมบัติการสลับที่

  1. สมบัติการสลับที่สำหรับการบวก

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b = b + a

เช่น 3 + 5 = 5 + 3

จะเห็นว่า 3 + 5 = 8 และ  5 + 3 = 8

ดังนั้น ไม่ว่าสลับที่ของการบวกอย่างไร ผลลัพธ์ที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การลบ เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 1  จงหาผลบวกต่อไปนี้
1)  13 + 5 = 5 + 13 = 18
2)  2 + (-8) = (-8) + 2 = -6
3)  (-10) + 3 = 3 + (-10) = -7
4)  (-9) + (-4) = (-4) + (-9) = -13

  1. สมบัติการสลับที่สำหรับการคูณ

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a x b = b x a

เช่น 3 x 5 =  5 x 3

จะเห็นว่า 3 x 5 = 15 และ  5 x 3 = 15

ดังนั้น ไม่ว่าสลับที่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การหาร เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 2  จงหาผลคูณต่อไปนี้
1)  5 x 4 = 4 x 5 = 20
2)  (-10) x 3 = 3 x (-10) = -30 (ลบคูณบวกได้ลบ)
3)  5 x (-8) = (-8) X 5 = -40 (บวกคูณลบได้ลบ)

4)  (-7) x (-5) = (-5) x (-7) = 35 (ลบคูณลบได้บวก)

ในทางคณิตศาสตร์ สมบัติการสลับที่ของจำนวนเต็ม คือ การเปลี่ยนแปลงตำแหน่งของจำนวนเต็ม โดยไม่ทำให้ผลลัพธ์สุดท้ายเปลี่ยนแปลง

สรุป  เครื่องหมายเหมือนกันคูณกันได้บวก  เครื่องหมายต่างกันคูณกันได้ลบ

สมบัติการเปลี่ยนหมู่

  1. สมบัติการเปลี่ยนหมู่สำหรับการบวก

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a + b) + c = a + (b + c)

เช่น (53) + 2 = 5(3 + 2)

จะเห็นว่า (53) + 2 = 10 และ   5 + (3 + 2) = 10

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการบวกอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 3  จงหาผลบวกต่อไปนี้
1)  (15 + 5) + 8 = 15 + (5 + 8) = 28
2)  [10 + (-7)] + 9 = 10 + [(-7) + 9] = 12
3)  [(-16) + 6] + 5 = (-16) + (6+5) = -5
4)  [15 + (-3)] + (-8) = 15 + [(-3) + (-8)] = 4
5)  [(-20) + (-10)] + 5 = (-20) + [(-10) + 5] = -25                                                                     

2. สมบัติการเปลี่ยนหมู่สำหรับการคูณ

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a x b) x c = a x (b x c)

เช่น (53) x 2 = 30 = 5(3 x 2)

จะเห็นว่า (53) x 2 = 30  และ  5 x (3 x 2) = 30

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 4  จงหาผลคูณต่อไปนี้
1)  (10 x 2) x 3 = 10 x (2 x 3) = 60
2)  [(-8) x 5] x 2 = (-8) x (5 x 2) = -80
3)  [4 x (-5)] x 5 = 4 x [(-5) x 5 = -100
4)  [3 x (-4)] x (-2) = 3 x [(-4) x (-2)] = 24
5)  [(-4) x (-2)] x 5=(-4) x [(-2) x 5] = 40

สมบัติการเปลี่ยนหมู่ของจำนวนสามจำนวนที่นำมาคูณกัน จะคูณจำนวนที่หนึ่งกับจำนวนที่สอง หรือคูณ
จำนวนที่สองกับจำนวนที่สามก่อน แล้วจึงคูณกับจำนวนที่เหลือ ผลคูณย่อมเท่ากัน

สมบัติการแจกแจง

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว a x (b + c) = (a x b) + (a x c) และ  

( b + c) x a = (b x a) + (c x a

เช่น 2 x (53) = 16 = (2 x 5) + (2 x 3)

จะเห็นว่า 2 x (53) = 16 และ (2 x 5) + (2 x 3) = 16 

ดังนั้น สมบัติการแจกแจงจึงเป็นความสัมพันธ์ระหว่างการบวกและการคูณ

ตัวอย่างที่ 5  จงหาผลคูณต่อไปนี้
1)   2 x (5 + 7)
= (2 x 5) + (2 x 7)
= 10 + 14
= 24
2)  (-3) x (4 + 6)
= [(-3) x 4] + [(-3) × 6]
= (-12) + (-18)
= -30
3)  (-5) x [(-2) + 8)=[(-5) x (-2)] + [(-5) x 8]
= 10 + (-40)
= -30
4)  (7+3) x 5
= (7X5) + (3×5)                                                                                                                                                                           = 35 + 15                                                                                                                                                                                     = 50                                                                                                                             
5)  [(-9) + 3)] x (-3)                                                                                                                                                                    = [(-9) x (-3)] + [3 x (-3)]
= 27 + (-9)
= 18

สมบัติการแจกแจงจะเป็นการคูณแจงแจงจำนวนเข้าไปในวงเล็บ ซึ่งจะต้องคูณจำนวนทุกจำนวนที่อยู่ในวงเล็บ

สมบัติของหนึ่งและศูนย์

สมบัติของหนึ่ง

–  การคูณจำนวนใดๆ ด้วยหนึ่ง หรือหนึ่งคูณจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนนั้นเสมอ

เช่น 87 x 1 = 87

หรือ 1 x 87 = 87

ตัวอย่างที่ 6 จงหาผลลัพธ์ต่อไปนี้
1)   1 x 14 = 14
2)   (-5) x 1 = -5
3)   (-1) x 1 = -1
4)   1 x (-16) = -16
5)   27x (-1) = -27
6)   (-34) x 1 = -34

–  การหารจำนวนใดๆ ด้วยหนึ่งจะได้ผลหารเท่ากับจำนวนนั้นเสมอ

เช่น 45 ÷ 1 = 45

หรือ  \frac{45}{1}  = 45

สมบัติของศูนย์

–  การบวกจำนวนใดๆ ด้วยศูนย์ หรือการบวกศูนย์ด้วยจำนวนใดๆ จะได้ผลบวก เท่ากับจำนวนนั้นเสมอ

เช่น 87 + 0 = 87

หรือ  0 + 87  = 87

ตัวอย่างที่ 7  จงหาผลบวกต่อไปนี้
1)  12 + 0 = 12
2)  0 + (-23) = -23
3)  (-27) + 0 = -27
4)  0 + 0 = 0

–  การคูณจำนวนใดๆ ด้วยศูนย์ หรือการคูณศูนย์ด้วยจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนศูนย์ (ศูนย์คูณอะไรก็ได้ศูนย์)

เช่น 235 x 0 = 0

หรือ  0 x 235  = 0

ตัวอย่างที่ 8 จงหาผลคูณต่อไปนี้
1)  12 X 0 = 0
2)  0 x (-23) = 0
3)  (-27) × 0 = 0
4)  0 x 0 = 0

–  การหารศูนย์ด้วยจำนวนใดๆ ที่ไม่ใช่ศูนย์ จะได้ผลหารเท่ากับศูนย์

เช่น 0 ÷ 95 = 0

หรือ \frac{0}{95}  = 45

ตัวอย่างที่ 9 จงหาผลหารต่อไปนี้
1)  0 ÷ 23 = 0
2)  0 ÷ (-23) = 0

–  ถ้าผลคูณของสองจำนวนใดเท่ากับศูนย์ จำนวนใดจำนวนหนึ่งอย่างน้อยหนึ่งจำนวนต้องเท่ากับศูนย์

เช่น a x b = 0

จะได้ว่า a  = 0 หรือ b = 0

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 10 จงหาผลคูณของ (-5)(6)(-2)
วิธีทำ (-5)(6)(-2) = [(-5)x6] x (-2)
                          =(-30) x (-2)
                          = 60                                                                                                                                                                        ดังนั้น  (-5)(6)(-2) = 60

ตัวอย่างที่ 11 จงหาผลคูณของ 999 X 5
วิธีทำ 999 x 5 = (1000 – 1) x 5
                       = [1000 + (-1)] x 5
                       = (1000 x 5)+[(-1) x 5]
                       = 5000 + (-5)
                        = 4,995
ดังนั้น  999 x 5 = 4,995

จากตัวอย่างทั้งหมด น้องๆจะเห็นว่ามีสมบัติการบวกและการคูณ แต่จะไม่มีสมบัติการลบและการหาร เพราะว่า การลบจำนวนเต็มก็คือ การบวกด้วยจำนวนเต็มลบ ซึ่งเราจะเรียกว่าสมบัติการบวก ส่วนการหารจำนวนเต็มคือ การนำเศษส่วนมาคูณ เราเรียกว่าสมบัติการคูณ

เมื่อน้องได้เรียนรู้เรื่อง สมบัติของจำนวนเต็ม ซึ่งสมบัติเหล่านี้จะนำมาใช้ในการบวก ลบ คูณ และหาร จำนวนเต็ม ซึ่งน้องๆจะต้องฝึกทำโจทย์อย่างสมำ่เสมอ จึงจะทำให้น้องๆสามารถคำนวณค่าต่างๆได้อย่างรวดเร็วและเป็นระบบ

คลิปวิดีโอ สมบัติของจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี สมบัติของจำนวนเต็ม  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย สมบัติของจำนวนเต็ม และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

เรียนออนไลน์ คณิตศาสตร์

กราฟของสมการเชิงเส้นสองตัวแปร (จุดตัดแกน x และจุดตัดแกน y)

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟโดยใช้วิธีการหาจุดตัดของแกน x และ แกน y

สามก๊ก ความเป็นมาของวรรณกรรมจีนเพชรน้ำเอกของโลก

สามก๊ก เป็นวรรณกรรมจีนที่มีมีชื่อเสียงไปทั่วโลก ไม่เว้นแม้แต่ประเทศไทย โดยฉบับแปลที่เราคุ้นเคยกันเป็นอย่างดีคือฉบับที่แปลโดยเจ้าพระยาคลัง (หน) และด้วยเนื้อหาที่เต็มไปด้วยเล่ห์กลเพทุบาย กลศึกในการรบ การชิงรักหักเหลี่ยม ความเคียดแค้นชิงชัง ทำให้เนื้อเรื่องมีความยาวสมกับเป็นกับเป็นวรรณกรรมอิงประวัติศาสตร์ แต่บทเรียนที่น้อง ๆ จะเรียนคือตอน กวนอูไปรับราชการกับโจโฉ จะมีเนื้อหาและความเป็นมาอย่างไรเราไปเรียนรู้พร้อมกันค่ะ   ความเป็นมาของ สามก๊ก   สามก๊ก เป็นวรรณกรรมจีนอิงประวัติศาสตร์ ที่เรื่องราวและเหตุการณ์ต่าง ๆ เกิดขึ้นจริงในประวัติศาสตร์ของจีน (ค.ศ.

วิเคราะห์ สังเคราะห์ ประเมินค่า 3 วิธีที่จะช่วยพัฒนาความคิดให้เป็นระบบ

การคิด คือ กระบวนการทำงานของสมองที่ตอบสนองต่อสิ่งแวดล้อม โดยอาศัยประสบการณ์ความรู้และสภาพแวดล้อมมาพัฒนาการคิดและแสดงออกมาอย่างมีระบบ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเจาะลึกถึงวิธีการคิดทั้ง 3 แบบคือ วิเคราะห์ สังเคราะห์ และ ประเมินค่า ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การพัฒนาและแสดงความคิด   มนุษย์สามารถแสดงความคิดออกมาได้โดยการใช้ภาษา ซึ่งการใช้ภาษานั้นก็คือวิธีการถ่ายทอดความคิดที่อยู่ในหัวของเราออกมาให้คนอื่นเข้าใจและรู้ว่าเรามีความคิดต่อสิ่งนั้น ๆ อย่างไรบ้างไม่ว่าจะเป็นการพูดหรือการเขียน ดังนั้นการพัฒนาความคิดจึงเป็นสิ่งสำคัญ โดยวิธีการคิดสามารถแบ่งได้เป็น 3 ประเภทดังนี้

ป6 การใช้ประโยคคำสั่งในชีวิตประจำวัน

การใช้ประโยคคำสั่งในชีวิตประจำวัน

  สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ประโยคคำสั่งในชีวิตประจำวัน (Imperative sentence in daily life)” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ประเภทของประโยค ” Imperative sentence “     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base

ระดับภาษา เรียนรู้วิธีใช้ให้ถูกต้องและเหมาะสม

ระดับภาษา มีความสำคัญอย่างมากในภาษาไทย น้อง ๆ ทราบไหมคะว่าภาษาที่เราใช้กันอยู่ในทุกวันนี้ ก็มีระดับของมันที่จะเป็นตัวบ่งบอกความเหมาะสม ให้เราได้เลือกใช้กันอย่างถูกกาลเทศะ อยากรู้ไหมคะว่ามีกี่ระดับ แต่ละระดับเป็นอย่างไร ต้องใช้แบบไหน ใช้กับใครจึงจะถูก ถ้าพร้อมแล้ว ไปเรียนรู้บทเรียนภาษาไทยในวันนี้กันเลยค่ะ   ความหมายของ ระดับภาษา     ระดับภาษา หมายถึง ความลดหลั่นของถ้อยคำและการเรียบเรียงถ้อยคำที่ใช้โดยพิจารณาตามโอกาสหรือกาลเทศะ ความสัมพันธ์ระหว่างบุคคลที่เป็นผู้สื่อสาร ผู้รับสาร และเนื้อหาที่สื่อสาร  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1