สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย

สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม

สมบัติการสลับที่

  1. สมบัติการสลับที่สำหรับการบวก

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b = b + a

เช่น 3 + 5 = 5 + 3

จะเห็นว่า 3 + 5 = 8 และ  5 + 3 = 8

ดังนั้น ไม่ว่าสลับที่ของการบวกอย่างไร ผลลัพธ์ที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การลบ เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 1  จงหาผลบวกต่อไปนี้
1)  13 + 5 = 5 + 13 = 18
2)  2 + (-8) = (-8) + 2 = -6
3)  (-10) + 3 = 3 + (-10) = -7
4)  (-9) + (-4) = (-4) + (-9) = -13

  1. สมบัติการสลับที่สำหรับการคูณ

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a x b = b x a

เช่น 3 x 5 =  5 x 3

จะเห็นว่า 3 x 5 = 15 และ  5 x 3 = 15

ดังนั้น ไม่ว่าสลับที่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การหาร เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 2  จงหาผลคูณต่อไปนี้
1)  5 x 4 = 4 x 5 = 20
2)  (-10) x 3 = 3 x (-10) = -30 (ลบคูณบวกได้ลบ)
3)  5 x (-8) = (-8) X 5 = -40 (บวกคูณลบได้ลบ)

4)  (-7) x (-5) = (-5) x (-7) = 35 (ลบคูณลบได้บวก)

ในทางคณิตศาสตร์ สมบัติการสลับที่ของจำนวนเต็ม คือ การเปลี่ยนแปลงตำแหน่งของจำนวนเต็ม โดยไม่ทำให้ผลลัพธ์สุดท้ายเปลี่ยนแปลง

สรุป  เครื่องหมายเหมือนกันคูณกันได้บวก  เครื่องหมายต่างกันคูณกันได้ลบ

สมบัติการเปลี่ยนหมู่

  1. สมบัติการเปลี่ยนหมู่สำหรับการบวก

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a + b) + c = a + (b + c)

เช่น (53) + 2 = 5(3 + 2)

จะเห็นว่า (53) + 2 = 10 และ   5 + (3 + 2) = 10

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการบวกอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 3  จงหาผลบวกต่อไปนี้
1)  (15 + 5) + 8 = 15 + (5 + 8) = 28
2)  [10 + (-7)] + 9 = 10 + [(-7) + 9] = 12
3)  [(-16) + 6] + 5 = (-16) + (6+5) = -5
4)  [15 + (-3)] + (-8) = 15 + [(-3) + (-8)] = 4
5)  [(-20) + (-10)] + 5 = (-20) + [(-10) + 5] = -25                                                                     

2. สมบัติการเปลี่ยนหมู่สำหรับการคูณ

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a x b) x c = a x (b x c)

เช่น (53) x 2 = 30 = 5(3 x 2)

จะเห็นว่า (53) x 2 = 30  และ  5 x (3 x 2) = 30

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 4  จงหาผลคูณต่อไปนี้
1)  (10 x 2) x 3 = 10 x (2 x 3) = 60
2)  [(-8) x 5] x 2 = (-8) x (5 x 2) = -80
3)  [4 x (-5)] x 5 = 4 x [(-5) x 5 = -100
4)  [3 x (-4)] x (-2) = 3 x [(-4) x (-2)] = 24
5)  [(-4) x (-2)] x 5=(-4) x [(-2) x 5] = 40

สมบัติการเปลี่ยนหมู่ของจำนวนสามจำนวนที่นำมาคูณกัน จะคูณจำนวนที่หนึ่งกับจำนวนที่สอง หรือคูณ
จำนวนที่สองกับจำนวนที่สามก่อน แล้วจึงคูณกับจำนวนที่เหลือ ผลคูณย่อมเท่ากัน

สมบัติการแจกแจง

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว a x (b + c) = (a x b) + (a x c) และ  

( b + c) x a = (b x a) + (c x a

เช่น 2 x (53) = 16 = (2 x 5) + (2 x 3)

จะเห็นว่า 2 x (53) = 16 และ (2 x 5) + (2 x 3) = 16 

ดังนั้น สมบัติการแจกแจงจึงเป็นความสัมพันธ์ระหว่างการบวกและการคูณ

ตัวอย่างที่ 5  จงหาผลคูณต่อไปนี้
1)   2 x (5 + 7)
= (2 x 5) + (2 x 7)
= 10 + 14
= 24
2)  (-3) x (4 + 6)
= [(-3) x 4] + [(-3) × 6]
= (-12) + (-18)
= -30
3)  (-5) x [(-2) + 8)=[(-5) x (-2)] + [(-5) x 8]
= 10 + (-40)
= -30
4)  (7+3) x 5
= (7X5) + (3×5)                                                                                                                                                                           = 35 + 15                                                                                                                                                                                     = 50                                                                                                                             
5)  [(-9) + 3)] x (-3)                                                                                                                                                                    = [(-9) x (-3)] + [3 x (-3)]
= 27 + (-9)
= 18

สมบัติการแจกแจงจะเป็นการคูณแจงแจงจำนวนเข้าไปในวงเล็บ ซึ่งจะต้องคูณจำนวนทุกจำนวนที่อยู่ในวงเล็บ

สมบัติของหนึ่งและศูนย์

สมบัติของหนึ่ง

–  การคูณจำนวนใดๆ ด้วยหนึ่ง หรือหนึ่งคูณจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนนั้นเสมอ

เช่น 87 x 1 = 87

หรือ 1 x 87 = 87

ตัวอย่างที่ 6 จงหาผลลัพธ์ต่อไปนี้
1)   1 x 14 = 14
2)   (-5) x 1 = -5
3)   (-1) x 1 = -1
4)   1 x (-16) = -16
5)   27x (-1) = -27
6)   (-34) x 1 = -34

–  การหารจำนวนใดๆ ด้วยหนึ่งจะได้ผลหารเท่ากับจำนวนนั้นเสมอ

เช่น 45 ÷ 1 = 45

หรือ  \frac{45}{1}  = 45

สมบัติของศูนย์

–  การบวกจำนวนใดๆ ด้วยศูนย์ หรือการบวกศูนย์ด้วยจำนวนใดๆ จะได้ผลบวก เท่ากับจำนวนนั้นเสมอ

เช่น 87 + 0 = 87

หรือ  0 + 87  = 87

ตัวอย่างที่ 7  จงหาผลบวกต่อไปนี้
1)  12 + 0 = 12
2)  0 + (-23) = -23
3)  (-27) + 0 = -27
4)  0 + 0 = 0

–  การคูณจำนวนใดๆ ด้วยศูนย์ หรือการคูณศูนย์ด้วยจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนศูนย์ (ศูนย์คูณอะไรก็ได้ศูนย์)

เช่น 235 x 0 = 0

หรือ  0 x 235  = 0

ตัวอย่างที่ 8 จงหาผลคูณต่อไปนี้
1)  12 X 0 = 0
2)  0 x (-23) = 0
3)  (-27) × 0 = 0
4)  0 x 0 = 0

–  การหารศูนย์ด้วยจำนวนใดๆ ที่ไม่ใช่ศูนย์ จะได้ผลหารเท่ากับศูนย์

เช่น 0 ÷ 95 = 0

หรือ \frac{0}{95}  = 45

ตัวอย่างที่ 9 จงหาผลหารต่อไปนี้
1)  0 ÷ 23 = 0
2)  0 ÷ (-23) = 0

–  ถ้าผลคูณของสองจำนวนใดเท่ากับศูนย์ จำนวนใดจำนวนหนึ่งอย่างน้อยหนึ่งจำนวนต้องเท่ากับศูนย์

เช่น a x b = 0

จะได้ว่า a  = 0 หรือ b = 0

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 10 จงหาผลคูณของ (-5)(6)(-2)
วิธีทำ (-5)(6)(-2) = [(-5)x6] x (-2)
                          =(-30) x (-2)
                          = 60                                                                                                                                                                        ดังนั้น  (-5)(6)(-2) = 60

ตัวอย่างที่ 11 จงหาผลคูณของ 999 X 5
วิธีทำ 999 x 5 = (1000 – 1) x 5
                       = [1000 + (-1)] x 5
                       = (1000 x 5)+[(-1) x 5]
                       = 5000 + (-5)
                        = 4,995
ดังนั้น  999 x 5 = 4,995

จากตัวอย่างทั้งหมด น้องๆจะเห็นว่ามีสมบัติการบวกและการคูณ แต่จะไม่มีสมบัติการลบและการหาร เพราะว่า การลบจำนวนเต็มก็คือ การบวกด้วยจำนวนเต็มลบ ซึ่งเราจะเรียกว่าสมบัติการบวก ส่วนการหารจำนวนเต็มคือ การนำเศษส่วนมาคูณ เราเรียกว่าสมบัติการคูณ

เมื่อน้องได้เรียนรู้เรื่อง สมบัติของจำนวนเต็ม ซึ่งสมบัติเหล่านี้จะนำมาใช้ในการบวก ลบ คูณ และหาร จำนวนเต็ม ซึ่งน้องๆจะต้องฝึกทำโจทย์อย่างสมำ่เสมอ จึงจะทำให้น้องๆสามารถคำนวณค่าต่างๆได้อย่างรวดเร็วและเป็นระบบ

คลิปวิดีโอ สมบัติของจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี สมบัติของจำนวนเต็ม  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย สมบัติของจำนวนเต็ม และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ตัวหารร่วมมาก (ห.ร.ม.)

ตัวหารร่วมมาก (ห.ร.ม.)

             ตัวหารร่วมมาก (ห.ร.ม.) ตัวหารร่วมมาก (ห.ร.ม.) ของจำนวนนับตั้งแต่สองจำนวนขึ้นไปนั้น  เป็นการหาตัวหารร่วมหรือตัวประกอบร่วมที่มีค่ามากที่สุดของจำนวนนับเหล่านั้น ในบทความนี้ได้รวบรวมวิธี การหา ห.ร.ม. ไว้ทั้งหมด 3 วิธี น้องๆอาจคุ้นชินกับ การหา ห.ร.ม. โดยวิธีตั้งหาร แต่น้องๆทราบหรือไม่ว่าวิธีการหา ห.ร.ม. มีวิธีการดังต่อไปนี้ การหา ห.ร.ม. โดยการหาผลคูณร่วม การหา ห.ร.ม.

ตัวบ่งปริมาณ

ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์ ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U) ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x

เทคนิคอ่านจับใจความ Skim and Scan

เทคนิคอ่านเร็วจับใจความในภาษาอังกฤษ (Skimming and Scanning)

เคยเป็นมั้ยว่าเจอบทความภาษาอังกฤษทีไร ปวดหัวทุกที ทั้งเยอะและยาว เมื่อไหร่จะอ่านจบกว่าจะตอบได้หมดเวลากันพอดี สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดูเทคนิคการอ่านเพื่อจับใจความสำคัญ โดยใช้วิธีการที่เรียกว่า อ่านแบบเร็ว (จ๊วด …) หรือ Speed Reading (ภาษาอีสาน จ๊วด แปลว่า เร็วเหมือนเสียงปล่อยจรวด) ถ้าเราสามารถอ่านได้เร็วเหมือนจรวดคงเป็นสิ่งที่ดีมาก ไปจ๊วดกันเลยกับเทคนิคอ่านเร็วทุกคน ก่อนอื่นจะต้องรู้จักกับประเภทของ Speed Reading กันก่อนค่ะ การอ่านแบบจับใจความสำคัญส่วนใหญ่แล้วเราจะเจอ

บทเสภาสามัคคีเสวก

บทเสภาสามัคคีเสวก ที่มาของกลอนเสภาอันทรงคุณค่า

บทเสภาสามัคคีเสวก   เมื่อเห็น บทเสภาสามัคคีเสวก ครั้งแรก เชื่อว่าต้องมีน้อง ๆ หลายคนต้องเผลออ่านคำว่า เสวก เป็น (สะ-เหวก) แน่ ๆ เลยใช่ไหมคะ แต่ที่จริงแล้วคำว่าเสวกนั้นต้องอ่านให้ถูกต้องว่า (เส-วก) ที่มีความหมายถึงผู้ใกล้ชิด เป็นยศของข้าราชการในราชสำนักนั่นเองค่ะ บทเรียนภาษาไทยในวันนี้ไม่เพียงแต่จะสอนอ่านให้ถูกต้อง แต่จะพาน้อง ๆ ไปเรียนรู้ประวัติความเป็นมาของเรื่องย่อวรรณคดีไทยอย่างบทเสภาสามัคคีเสวกกันอีกด้วย โดยจะเป็นเรื่องราวแบบไหน มีลักษณะคำประพันธ์และเรื่องย่ออย่างไรบ้าง เราไปศึกษาเรื่องนี้พร้อม

ศิลาจารึกหลักที่ 1 ถอดความหมายพร้อมเรียนรู้คุณค่าในเรื่อง

ศิลาจารึกหลักที่ 1มีความเป็นมาอย่างไร น้อง ๆ ก็คงจะได้เรียนรู้กันไปแล้ว วันนี้เรื่องที่เราจะมาศึกษากันต่อก็คือเนื้อหาเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในศิลาจารึกหลักที่ 1 กันค่ะ ไปดูพร้อมๆ กันเลยว่าในศิลาจารึกจะบันทึกเรื่องเล่าอะไรไว้บ้าง และมีคุณค่าด้านใด   ศิลาจารึกหลักที่ 1 : ตัวบทที่น่าสนใจ       พ่อกูชื่อศรีอินทราทิตย์ แม่กูชื่อนางเสือง พี่กูชื่อบานเมือง ตูมีพี่น้องท้องเดียวห้าคน

Profile

การตั้งประโยคคำถามแบบมีกริยาช่วยนำหน้าและ Wh-questions

สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดู ความแตกต่างของ ประโยคคำถามที่มีกริยาช่วยนำหน้า กับ Wh-questions กันค่ะ พร้อมแล้วก็ไปลุยกันเลย มารู้จักกับกริยาช่วย   Helping verb หรือ Auxiliary verb กริยาช่วย หรือ ภาษาทางการเรียกว่า กริยานุเคราะห์  คือกริยาที่วางอยู่หน้ากริยาหลัก (Main verb) ในประโยค  ทำหน้าที่ช่วยกริยาอื่นให้มีความหมายตาม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1