ฟังก์ชันลอการิทึม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ y=a^{x} ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ x=a^{y} จัดรูปใหม่ ได้เป็น ฟังก์ชันลอการิทึม (อ่านว่าล็อก x ฐาน a)

 

บทนิยาม

logarithm คือฟังก์ชันที่อยู่ในรูป {(x, y) ∈ \mathbb{R}^+\times \mathbb{R} : ฟังก์ชันลอการิทึม} โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1

 

ตัวอย่าง 

x = 5^{y} จัดรูปเป็น ฟังก์ชันลอการิทึม อ่านว่า ล็อก x ฐาน 5

 

กราฟ

กรณี a > 1

ฟังก์ชันลอการิทึม

กรณี 0 < a < 1

ฟังก์ชันลอการิทึม

 

จากกราฟจะเห็นว่า

1.) เมื่อ a > 1 จะเป็นฟังก์ชันเพิ่ม

2.) เมื่อ 0 < a < 1 จะเป็นฟังก์ชันลด

3.) กราฟของทั้ง 2 กรณีจะไม่ตัดแกน y

4.) ค่า x จะเป็นบวกเสมอ แต่ค่า y เป็นได้ทั้งบวกและลบ

 

สมบัติ ฟังก์ชันลอการิทึม

ให้ a, M และ N เป็นจำนวนจริงบวกที่ a ≠ 1 และ k เป็นจำนวนจริง จะได้ว่า

1.) ฟังก์ชันลอการิทึม

(ล็อกผลคูณเท่ากับผลบวกของล็อก)

2.) ฟังก์ชันลอการิทึม

(ล็อกผลหารเท่ากับผลต่างของล็อก)

3.) ฟังก์ชันลอการิทึม

เช่น   log_{2}x^3=3log_{2}x

4.) log_{a}a=1

5.) ฟังก์ชันลอการิทึม

(ล็อก 1 เท่ากับ 0)

6.) ฟังก์ชันลอการิทึม  เมื่อ k ≠ 0

เช่น  log_{2^5}x=\frac{1}{5}log_{2}x

7.) log_{a}b=\frac{1}{log_{b}a}  เมื่อ b >0 และ b ≠ 1

เช่น  ฟังก์ชันลอการิทึม

8.) ฟังก์ชันลอการิทึม  เมื่อ N ≠ 1

เช่น   ฟังก์ชันลอการิทึม   (เลขฐานไม่จำเป็นต้องเป็นเลข 2 เป็นเลขอะไรก็ได้ที่มากกว่า 0 และไม่เท่ากับ 1 )

การหาค่าลอการึทึม

ลอการิทึมที่ใช้มากและค่อนข้างนิยมใช้ในการคำนวณ คือ ลอการิทึมสามัญ (common logarithm) ซึ่งก็คือลอการิทึมที่มีเลขฐานสิบ และโดยทั่วไปเราจะเขียนล็อกโดยไม่มีฐานกำกับ

เช่น log_{10}x= log (x)

จากสมบัติข้อที่ 3 และ 4 จะได้ว่า

log10 = 1

log100=log10^{2}=2log10=2(1)=2

log0.01=log\frac{1}{100}=log10^{-2}=-2log(10)=-2

ดังนั้น จะได้ว่า log10^n=nlog10=n  เมื่อ n เป็นจำนวนเต็มใดๆ

ดังนั้น ถ้า N เป็นจำนวนเต็มบวกใดๆ เราสามารถเขียนอยู่ในรูป N_0\times 10^n ได้เสมอ โดยที่ 0 ≤ N < 10

เช่น 3,400=3.4\times10^3 , 0.0029 = 2.9 \times 10^{-3}

 

ทีนี้เรามาพิจารณา

N=N_0\times 10^n เมื่อ 0 ≤ N < 10

จะได้ว่า

ฟังก์ชันลอการิทึม

 

เราจะเรียก logN_0  ว่า แมนทิสซาของ logN

และเรียก n ว่า แคแรกเทอริสติกของ  logN

 

บทนิยาม

  1. ถ้า log N = A จะเรียก N ว่า แอนติลอการิทึมของ log N
  2. ถ้า log N = A จะได้ว่า N = antilog A

 

ตัวอย่าง

ให้หาค่าแคแรกเทอริสติกของ log 56.2

ฟังก์ชันลอการิทึม

 

ลอการิทึมที่นิยมใช้และมีประโยชน์มากเมื่อเรียนคณิตศาสตร์ขั้นที่สูงขึ้น คือ ลอการิทึมฐาน e โดยที่ e คือสัญลักษณ์ค่าคงที่ ซึ่ง e ≈ 2.7182818 ซึ่งล็อกฐาน e เราจะเรียกอีกอย่างว่า ลอการิทึมธรรมชาติ มักจะเขียนอยู่ในรูป ln x (อ่านว่าล็อก x ฐาน e)

การเปลี่ยนฐานของลอการิทึม

ตัวอย่างการเปลี่ยนฐานของลอการิทึม

กำหนดให้ log_65=0.8982 จงหาค่า log_{36}5

 

น้องๆสามารถเข้าไปอ่านบทความ ฟังก์ชันเอกซ์โพเนนเชียล เพื่อจะได้เข้าใจกับฟังก์ชันลอการิทึมง่ายขึ้น

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน

การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่ใช้ในการเรียน + การใช้ Can/ Could/ Should

สวัสดีค่ะนักเรียนชั้นม. 1 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้รูปประโยคคำสั่ง คำขอร้อง คำแนะนำ ที่เจอบ่อยและการใช้ Can, Could, Should กันนะคะ ไปลุยกันเลย   มารู้จักกับประโยคคำสั่ง (Imperative sentence)     รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence Imperative sentence ในรูปแบบประโยคบอกเล่าจะ

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ บทนิยาม ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า  f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ และ ใดๆใน A ถ้า  < 

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น สมการที่ไม่มีตัวแปร                           

ความน่าเชื่อถือของสื่อที่ฟัง

ฟังอย่างไรให้ได้สาระประโยชน์ดี ๆ ด้วยวิธีวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟัง

บทนำ สวัสดีน้อง ๆ ทุกคนยินดีต้อนรับเข้าสู่เนื้อหาในบทเรียนภาษาไทยกันอีกครั้ง สำหรับบทเรียนในวันนี้ต้องบอกว่ามีประโยชน์มาก ๆ และเราควรจะต้องศึกษาไว้เพื่อนำไปใช้ในการฟัง หรือคัดกรองสิ่งต่าง ๆ รอบตัวที่เรารับฟังมาให้มากขึ้น ซึ่งเราจะพาน้อง ๆ มาฝึกฝนการวิเคราะห์ความน่าเชื่อถือจากสื่อที่ฟังกัน เพราะในปัจจุบันเราสามารถรับสารได้หลากหลายรูปแบบมีทั้งประโยชน์ และโทษ ดังนั้น เราจึงต้องมีทักษะนี้ติดตัวไว้แยกแยะว่าสื่อนั้นมีความน่าเชื่อถือมากน้อยแค่ไหน ถ้าน้อง ๆ พร้อมแล้วเรามาเริ่มเรียนกันเลย   ความหมายของความน่าเชื่อถือ และสื่อ ความน่าเชื่อถือ หมายถึง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)}  จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1