การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การบวก ลบ และคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์ เราจะนำสมาชิกของเมทริกซ์แต่ละเมทริกซ์มาบวก ลบ คูณกัน ซึ่งการดำเนินการเหล่านี้มีสมบัติและข้อยกเว้นต่างกันไป เช่น การบวกต้องเอาสมาชิกตำแหน่งเดียวกันมาบวกกัน เป็นต้น

ต่อไปเราจะมาดูวิธีการบวก ลบ และคูณเมทริกซ์กันค่ะ

การบวกเมทริกซ์

เมทริกซ์ที่จะนำมาบวกกันได้นั้น ต้องมีมิติเท่ากัน และการบวกจะนำสมาชิกตำแหน่งเดียวกันมาบวกกัน

เช่น

1.)  การบวก ลบ และคูณเมทริกซ์

2.)  การบวก ลบ และคูณเมทริกซ์

 

การลบเมทริกซ์

การลบเมทริกซ์จะคล้ายๆกับการบวกเมทริกซ์เลย คือ มิติของเมทริกซ์ที่จะนำมาบวกกันจะต้องเท่ากัน แต่ต่างกันตรงที่สมาชิกข้างในเมทริกซ์จะต้องนำมาลบกัน เช่น

 

1.) การบวก ลบ และคูณเมทริกซ์

2.) การบวก ลบ และคูณเมทริกซ์

สมบัติการบวกเมทริกซ์

  1. สมบัติปิดการบวก คือ เมทริกซ์ที่มีมิติเดียวกันบวกกันแล้วผลลัพธ์ยังเป็นเมทริกซ์เหมือนเดิมและมิติก็เท่าเดิมด้วย
  2. สมบัติการสลับที่การบวก  คือ ให้ A และ B เป็นเมทริกซ์  จะได้ว่า A +B = B +A
  3. สมบัติการเปลี่ยนหมู่ คือ (A + B) + C = A + (B + C)
  4. สมบัติการมีเอกลักษณ์การบวก ซึ่งเอกลักษณ์การบวกของเมทริกซ์ คือ เมทริกซ์ศูนย์ (สมาชิกทุกตำแหน่งเป็น 0) เขียนแทนด้วย \underbar{0}
  5. สมบัติการมีตัวผกผัน คือ ถ้า A เป็นเมทริกซ์ใดๆแล้วจะได้ว่า (-A) เป็นเมทริกซ์ผกผันของ A ซึ่งเมื่อนำ A มาบวกกับ -A แล้วจะได้เมทริกซ์ศูนย์

 

 

การคูณเมทริกซ์ ด้วยจำนวนจริง

การคูณเมทริกซ์ด้วยจำนวนจริงคือ การนำจำนวนจริงค่าหนึ่งคูณกับเมทริกซ์ ซึ่งวิธีการคูณแบบนี้น้องๆสามารถนำจำนวนจริงนั้นเข้าไปคูณกับสมาชิกในตำแหน่งในเมทริกซ์ (ต้องคูณทุกตัวแหน่ง) และเมทริกซ์นั้นจะเป็นกี่มิติก็ได้ เช่น

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยจำนวนจริง

ให้ A, B เป็นเมทริกซ์ที่มีมิติ \inline m\times n และ c, d เป็นจำนวนจริง

  1. (cd)A = c(dA) = d(cA)  เช่น การบวก ลบ และคูณเมทริกซ์
  2. c(A + B) = cA + cB
  3. (c + d)A = cA + dA
  4. 1(A) = A และ -1(A) = -A

การคูณเมทริกซ์ด้วยเมทริกซ์

เมทริกซ์ที่จะคูณกันได้ต้องมีหลักเกณฑ์ดังนี้

1.) จำนวนหลักของเมทริกซ์ตัวหน้าต้อง เท่ากับ จำนวนแถวของเมทริกซ์ตัวหลัง

2.) มิติของเมทริกซ์ผลลัพธ์จะเท่ากับ จำนวนแถวของตัวหน้าคูณจำนวนหลักของตัวหลัง

เช่น

การบวก ลบ และคูณเมทริกซ์

วิธีการคูณเมทริกซ์

การบวก ลบ และคูณเมทริกซ์

 

สมบัติการคูณเมทริกซ์ด้วยเมทริกซ์

1.) สมบัติการเปลี่ยนหมู่  

ถ้า A, B และ C เป็นเมทริกซ์ที่สามารถคูณติดต่อกันได้ จะได้ A(BC) = (AB)C

2.) สมบัติการมีเอกลักษณ์

เอกลักษณ์การคูณของเมทริกซ์ คือ \inline I_n 

น้องๆสามารถทำความรู้จักกับเมทริกซ์เอกลักษณ์เพิ่มเติม ได้ที่ >>> เมทริกซ์เอกลักษณ์

**เมทริกซ์ที่มีเอกลักษณ์ คือ เมทริกซ์จัตุรัส

3.) สมบัติการรแจกแจง

(A + B)C = AC + BC

A(B +C) = AB + AC

แต่!! เมทริกซ์จะมีสมบัติการแจกแจง เมื่อ A + B, B + C, AB, AC, BC สามารถหาค่าได้

 

สิ่งที่น้องๆต้องรู้เกี่ยวกับการคูณเมทริกซ์ด้วยเมทริกซ์

1.) ไม่มีสมบัติการสลับที่การคูณ นั่นคือ AB ไม่จำเป็นต้องเท่ากับ BA เช่น 

การบวก ลบ และคูณเมทริกซ์

2.) เมื่อ AB = BA จะได้

  1. การบวก ลบ และคูณเมทริกซ์
  2. \inline (A-B)^2=A^2-2AB+B^2
  3. \inline A^2-B^2=(A+B)(A-B)

3.) ถ้า \inline AB=\underbar{0}  ไม่จำเป็นที่ \inline A\neq \underbar{0} หรือ \inline B\neq \underbar{0}

4.) ถ้า \inline AB=AC โดยที่ \inline A\neq \underbar{0} ไม่จำเป็นที่ \inline B=C

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

ทริคการสืบค้นข้อมูลทางอินเทอร์เน็ตอย่างง่าย ๆ

ย้อนกลับไปเมื่อหลายสิบปีที่แล้วก่อนที่อินเทอร์เน็ตจะเข้ามามีบทบาทในชีวิตของทุกคนเหมือนอย่างทุกวันนี้ แหล่งการสืบค้นหลัก ๆ จะอยู่ที่ห้องสมุด แต่ในปัจจุบันเราสามารถเข้าถึงข้อมูลต่าง ๆ ได้ง่ายขึ้นเพียงคลิกปลายนิ้ว ข้อมูลที่ต้องการค้นหาก็มาปรากฏอยู่ตรงหน้าให้เลือกสรรมากมาย แต่เราจะมีวิธีการเลือกสืบค้นข้อมูลกันอย่างไร ถึงจะได้ข้อมูลที่ถูกต้องและครบถ้วนที่สุด บทเรียนในวันนี้ถือเป็นอีกหนึ่งเรื่องสำคัญที่จะช่วยให้การหาข้อมูลสำหรับการเรียนของน้อง ๆ นั้นง่ายขึ้น เราไปเรียนรู้เรื่อง การสืบค้นข้อมูลทางอินเทอร์เน็ต กันเลยค่ะ   การสืบค้นข้อมูลทางอินเทอร์เน็ต   เป็นการค้นคว้าหาความรู้โดยใช้สารสนเทศในลักษณะต่าง ๆ โดยมีเว็บไซต์ที่เป็นแหล่งเก็บรวบรวมภาพและข้อมูลต่าง ๆ    

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล

การเก็บรวบรวมข้อมูล การเก็บรวบรวมข้อมูล เป็นขั้นตอนหนึ่งที่มีความสำคัญมากทางสถิติ เพื่อใช้ในการตัดสินใจได้อย่างถูกต้องและแม่นยำ โดยข้อมูลที่ได้มีหลากหลายรูปแบบ อาจจะเป็นตัวเลข ข้อความ หรือรูปภาพ ซึ่งเป็นข้อมูลที่ตอบสนองวัตถุประสงค์หรือเป็นเรื่องที่เราสนใจ โดยสามารถจำแนกข้อมูลได้ตามลักษณะและแหล่งที่มาของข้อมูล ได้แก่ จำแนกตามลักษณะของข้อมูล แบ่งได้เป็น 2 ประเภท คือ ข้อมูลเชิงปริมาณ (Quantitative Data) คือ ข้อมูลที่วัดค่าได้ แสดงเป็นตัวเลข ซึ่งสามารถนำมาใช้เปรียบเทียบกันได้โดยตรง เช่น จำนวนบุตรในครอบครัว,

ม.1 There is_There are ทั้งประโยคบอกเล่า_ คำถาม_ปฏิเสธ

การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้น ม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ตารางแสดงความแตกต่างของ  There is/There are และ  Have/Has นักเรียนลองสังเกตดูความแตกต่างของการใช้ There is/There are กับ Have/has จากตารางด้านล่าง ดูนะคะ

การวัดพื้นที่ ม.2

ในบทความนี้เราจะได้เรียนรู้มาตราต่างๆของหน่วยในระบบที่ใช้กันอย่างแพร่หลาย รวมทั้งสูตรต่างๆที่ใช้ในการหาพื้นที่ เพื่อให้เราได้นำไปใช้ได้อย่างถูกต้อง

ความสัมพันธ์

ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1