การบวก ลบ คูณ หารจำนวนเต็ม

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้

การบวกจำนวนเต็ม

การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้

|-12|=   12

|4|=   4

เนื่องจาก   ค่าสัมบูรณ์ของจำนวนเต็มบวก และ จำนวนเต็มลบ ถอดค่าสมบูรณ์ได้ จำนวนเต็มบวก เสมอ               

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก          

ตัวอย่างที่ 1   จงหาผลบวกของจำนวนต่อไปนี้

1)   3 + 4

วิธีทำ      3 + 4 = | 3 | + | 4 |

      = 3 + 4

      = 7

ตอบ   7

2)   3 + 9

วิธีทำ      3 + 9  = | 3 | + | 9 |

       = 3 + 9

       = 12

ตอบ  12

        การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ทำได้โดยการนำค่าสัมบูรณ์มาบวกกัน  ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวก

การบวกจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 2   จงหาผลบวกของจำนวนต่อไปนี้  

1)   (-3) + (-4)  

วิธีทำ (-3) + (-4) = -7

ตอบ  -7

2)  (-4) + (-1)

วิธีทำ  (-4) + (-1)  =  -5

ตอบ   -5

          การบวกจำนวนเต็มลบกับจำนวนเต็มลบ  ผลลัพธ์ที่ได้เป็นจำนวนเต็มลบ

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มลบ 

ตัวอย่างที่ 3  จงหาผลบวกของจำนวนต่อไปนี้

1)   6 + (-4)  

วิธีทำ   6 + (-4) = 2

ตอบ   2

2)   2 + (-6)

วิธีทำ  2 + (-6) = -4

ตอบ   -4

3)   3 + (-2)

วิธีทำ  3 + (-2) = 1

ตอบ   1

4)   7 + (-5)

วิธีทำ  7 + (-5) = 2

ตอบ   2

การบวกจำนวนเต็มลบด้วยจำนวนเต็มบวก 

ตัวอย่างที่ 4  จงหาผลบวกของจำนวนต่อไปนี้

1)   (-2) + 5

วิธีทำ   (-2) + 5 = 3

ตอบ   3

2)  (-5) + 3

วิธีทำ   (-5) + 3 = -2

ตอบ   -2

3)  (-7) + 5

วิธีทำ   (-7) + 5 = -2

ตอบ   -2

4)  (-4) + 10

วิธีทำ   (-4) + 10 = 6

ตอบ   6

          การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ทำได้โดยการนำจำนวนที่มีค่าสัมบูรณ์มากกว่าเป็นตัวตั้ง แล้วลบด้วยจำนวนที่มีค่าสัมบูรณ์น้อยกว่า ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า

การลบจำนวนเต็ม

การลบจำนวนเต็มคือการบวกด้วยจำนวนตรงข้าม เช่น จำนวนตรงข้ามของ 2 คือ -2 , จำนวนตรงข้ามของ 8 คือ -8

ตัวอย่างที่ 5  จงหาผลลบของจำนวนต่อไปนี้

1)   7 – 12

วิธีทำ   7 – 12  =  7 + (-12)

                      =  -5

ตอบ       -5

2)  (-8) – 2

วิธีทำ    (-8) – 2  =  (-8) + (-2)

                         =  -10    

ตอบ       -10

3)   3 – (-5)

วิธีทำ    3 – (-5)       =  3 + 5

                               =  8

ตอบ       8

4)   (-3) – (-8)

วิธีทำ      (-3) – (-8)   =   (-3) + 8

                                =   5    

ตอบ       5

5)   8 – 5

วิธีทำ    8 – 5  =  8 + (-5)

                     =     3

ตอบ       3

6)   (-9) – 4

วิธีทำ        (-9) – 4   =  (-9) + (-4)

                              =  -13    

ตอบ       -13

7)   6 – (-4)

วิธีทำ    6 – (-4)       =  6 + 4

                               =  10

ตอบ       10

8)   (-8) – (-2)

วิธีทำ        (-8) – (-2)   =   (-8) + 2

                                  =   -6    

ตอบ       -6

9)   (-8) – 4

วิธีทำ   (-8) – 4  =  (-8) + (-4)

                         =  -12

ตอบ      -12

10)   (-9) – (-3)

วิธีทำ   (-9) – (-3)  =  (-9) + 3

                             =  -6

ตอบ      -6

การคูณจำนวนเต็ม

การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก

ตัวอย่างที่ 6  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   3 x 2  

วิธีทำ        3 x 2  =   | 3 | x | 2 |

                         =   3 x 2

                         =   6

ตอบ     6

2)   4 x 7  

วิธีทำ        4 x 7  =   | 4 | x | 7 |

                         =   4 x 7

                         =   28

ตอบ     28

3)   4 x 10

วิธีทำ       4 x 10  =   | 4 | x | 10 |

                         =   4 x 10

                         =   40

ตอบ     40

4)   6 x 9  

วิธีทำ  6 x 9  =   | 6 | x | 9 |

                         =   6 x 9

                         =   54

ตอบ     54

       การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (บวกคูณบวกได้บวก)

การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 7  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   (-2)(-5) = 0

วิธีทำ   (-2)(-5)  =   | -2 | x | -5 |

                         =   2 x 5

                         =   10

ตอบ     10

(2)  (-7)(-3) = 0

วิธีทำ       (-7)(-3)   =  | -7 | x | -3 |

                              =   7 x 3

                              =   21

ตอบ     21

       การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (ลบคูณลบได้บวก)

ตัวอย่างที่ 8  จงหาผลลัพธ์ของจำนวนต่อไปนี้

1)   [(-2)(4)](-9) 

วิธีทำ   [(-2)(4)](-9)  =  (-8) (-9)

                                =   72

ตอบ     72

2)    [ 5(-7)] 6 

วิธีทำ     [ 5(-7)]6   =  (-35) 6

                              =    -210

ตอบ     -210

3)   [ 2(-5)](-4) 

วิธีทำ     [ 2(-5)](-4)  =   (-10) (-4)

                                 =   40

ตอบ     40

4)   9[ (-5)(-4)]  

วิธีทำ   9[(-5)(-4)]   =  9 x 20

                               =   180

ตอบ     180

การหารจำนวนเต็ม

ตัวอย่างที่ 9  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   36 ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ 36

เนื่องจาก 6 x 6 = 36 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ 36 ÷ 6 = 6

2)   (-54) ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ -54

เนื่องจาก (-9) x 6 = -54 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ (-54) ÷ (-9) = 6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารเป็นจำนวนเต็มบวกทั้งคู่ หรือจำนวนเต็มลบทั้งคู่ จะได้คำตอบเป็นจำนวนเต็มบวก (ลบหารด้วยลบ หรือ บวกหารด้วยบวก ได้บวกเสมอ)

ตัวอย่างที่ 10  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   72 ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ 72

เนื่องจาก (-9) x (-8) = 72 

ดังนั้นจำนวนที่ต้องการคือ -8

นั่นคือ 72 ÷ (-9) = -8

2)   (-36) ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ -36

เนื่องจาก 6 x (-6) = -36 

ดังนั้นจำนวนที่ต้องการคือ -6

นั่นคือ (-36) ÷ 6 = -6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารตัวใดตัวหนึ่งเป็นจำนวนเต็มลบ โดยที่อีกตัวหนึ่งเป็นจำนวนเต็มบวก จะได้คำตอบเป็นจำนวนเต็มลบ (ลบหารด้วยบวก หรือ บวกหารด้วยลบ ได้ลบเสมอ)

ตัวอย่างที่ 11  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   14 ÷ (-7) = -2    (หาจำนวนที่คูณกับ -7 แล้วได้ 14 คือ -2)

2)   12 ÷ 3 = 4    (หาจำนวนที่คูณกับ 3 แล้วได้ 12 คือ 4)

3)   (-21) ÷ 3 = -7    (หาจำนวนที่คูณกับ 3 แล้วได้ -21 คือ -7)

4)   (-35) ÷ (-5) = 7    (หาจำนวนที่คูณกับ -5 แล้วได้ -35 คือ 7)

5)   40 ÷ 8 = 5    (หาจำนวนที่คูณกับ 8 แล้วได้ 40 คือ 5)

สรุป
  • การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ได้เป็นจำนวนเต็มบวก
  • การบวกจำนวนเต็มลบกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มลบ
  • การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า    
  • การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  ได้เป็นจำนวนเต็มบวก (บวกคูณบวกได้บวก)
  • การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวก (ลบคูณลบได้บวก)
  •  การหารจำนวนเต็ม ลบหารด้วยลบ ได้บวก หรือ บวกหารด้วยบวก ได้บวก
  • การหารจำนวนเต็ม ลบหารด้วยบวก ได้ลบ หรือ บวกหารด้วยลบ ได้ลบ

คลิปวิดีโอ การบวก ลบ คูณ หารจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี การบวก ลบ คูณ หารจำนวนเต็ม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ ม.5 M6 Gerund

Gerund

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า  

เรนจ์ของความสัมพันธ์

เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย   กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า  = {2, 5,

ระดับภาษา เรียนรู้วิธีใช้ให้ถูกต้องและเหมาะสม

ระดับภาษา มีความสำคัญอย่างมากในภาษาไทย น้อง ๆ ทราบไหมคะว่าภาษาที่เราใช้กันอยู่ในทุกวันนี้ ก็มีระดับของมันที่จะเป็นตัวบ่งบอกความเหมาะสม ให้เราได้เลือกใช้กันอย่างถูกกาลเทศะ อยากรู้ไหมคะว่ามีกี่ระดับ แต่ละระดับเป็นอย่างไร ต้องใช้แบบไหน ใช้กับใครจึงจะถูก ถ้าพร้อมแล้ว ไปเรียนรู้บทเรียนภาษาไทยในวันนี้กันเลยค่ะ   ความหมายของ ระดับภาษา     ระดับภาษา หมายถึง ความลดหลั่นของถ้อยคำและการเรียบเรียงถ้อยคำที่ใช้โดยพิจารณาตามโอกาสหรือกาลเทศะ ความสัมพันธ์ระหว่างบุคคลที่เป็นผู้สื่อสาร ผู้รับสาร และเนื้อหาที่สื่อสาร  

ป6ทบทวน Past simple tense

ทบทวนการใช้ Past Simple ทั้งกับประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้เราจะไป ทบทวนการใช้ Past Simple ทั้งกับประโยคบอกเล่า/คำถาม/ปฏิเสธ กันน๊า Let’s go! ไปลุยกันเลยจ้า Past Simple Tense คืออะไร     Past Simple Tense คือโครงสร้างที่ใช้กับเหตุการณ์ที่เกิดขึ้นแล้วจบลงไปแล้วในอดีต สิ่งสำคัญที่นักเรียนต้องรู้คือ กริยาช่องที่สองที่บอกความเป็นอดีต คำบอกเวลาในอดีตและโครงสร้างประโยคที่สำคัญๆ นั่นเอง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1