ยอดนิยม!
สอบเข้าม.4 MWIT อยากสอบติดต้องเตรียมตัวอย่างไร
สอบเข้าม.4 มหิดลวิทยานุสรณ์ สวัสดีค่ะน้อง ๆ ทุกคน ใครที่กำลังหาข้อมูลเพื่อเตรียมตัวสอบเข้า ม.4 โรงเรียนมหิดลวิทยานุสรณ์กันอยู่บ้าง? วันนี้พี่แอดมิน NockAcademy ได้ทำการสรุปขั้นตอนการสมัครและการเตรียมตัวสอบมาให้แล้ว! มีรายละเอียดอะไรบ้างไปดูกันเลย… โรงเรียนมหิดลวิทยานุสรณ์หรือที่เราเรียนสั้น ๆ ว่า MWIT เป็นโรงเรียนที่บริหารและจัดการการเรียนการสอนในด้านวิทยาศาสตร์และคณิตศาสตร์โดยมุ่งเน้นไปที่ความเป็นเลิศในวิชาดังกล่าว และค้นหานักเรียนที่มีศักยภาพทางวิทยาศาสตร์และคณิตศาสตร์สูงเพื่อพัฒนาศักยภาพได้อย่างเต็มประสิทธิภาพในการเรียนการสอน ซึ่งช่วงการรับสมัครจะอยู่ในช่วงเดือนสิงหาคมของทุกปี ผู้ที่ต้องการสมัครสอบต้องมีคุณสมบัติดังนี้ คุณสมบัติของผู้สมัครสอบคัดเลือกเข้า ม.4 1. เป็นผู้ที่มีความต้องการเข้าเรียนในโรงเรียนมหิดลวิทยานุสรณ์และต้องการเข้าศึกษาต่อในระดับอุดมศึกษาทางด้านคณิตศาสตร์ วิทยาศาสตร์และเทคโนโลยี

วิธีพูดสรุปความจากเรื่องที่ฟังและดูอย่างง่ายๆ
การพูดสรุปความสำคัญอย่างไร ? น้อง ๆ หลายคนคงจะเคยประสบปัญหาเวลาที่ต้องออกไปนำเสนองานหน้าชั้นเรียนแล้วไม่รู้ว่าจะพูดอย่างไรให้เพื่อนกับครูเข้าใจ เพราะเนื้อหาที่เราจำมามันก็เยอะเสียเหลือเกิน บทเรียนภาษาไทยวันนี้จะช่วยให้น้อง ๆ รับมือกับปัญหาเหล่านั้นได้ เพียงแค่น้อง ๆ มีความเข้าใจในเรื่องการพูดสรุปความ วันนี้เรามาดูไปพร้อม ๆ กันเลยนะคะว่าการพูดสรุปความจากเรื่องที่ฟังหรือดูจะมีวิธีใดบ้าง การพูดสรุปความจากเรื่องที่ฟังและดู การพูดคืออะไร องค์ประกอบของการพูด ผู้พูด คือผู้ที่มีจุดมุ่งหมายสำคัญที่จะนำเสนอความรู้ความคิดเห็นให้ผู้ฟังได้รับรู้และเข้าใจ เนื้อเรื่อง

การใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน
สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ ความแตกต่างของ Passive Voice VS Active Voice Passive Voice คือประโยคที่เน้นกรรม เน้นว่าใครถูกทำ Active

Describing People: การบรรยายบุคคลในภาษาอังกฤษ
สวัสดีน้องๆ ม. 2 ทุกคนครับ วันนี้เราจะมาเรียนรู้วิธีการบรรยายลักษณะบุคคลเป็นภาษาอังกฤษกันครับ ถ้าพร้อมแล้วไปเริ่มกันเลย!
บทความเตรียมสอบแนะนำ

เตรียมสอบเข้า ม.1 โรงเรียนสามเสนวิทยาลัย
มาเตรียมสอบเข้าสามเสนม.1 กันเถอะ เตรียมสอบเข้าสามเสนกันเถอะ! วันนี้ Nockacademy มีข้อมูลการสอบเข้าม.1 โรงเรียนสามเสนวิทยามาฝากกันค่า น้อง ๆ คนไหนกำลังหาข้อมูลอยู่ต้องกดบุ๊คมาร์คไว้แล้วเพราะว่าเรารวบรวมข้อมูลมาแบบจัดเต็ม ไปดูกันเลยดีกว่าว่าต้องเตรียมตัวยังไงบ้าง Let’s go! ก่อนอื่นต้องขอเกริ่นเกี่ยวกับโรงเรียนสามเสนวิทยาลัยก่อนเลยค่ะ ว่าทำไมโรงเรียนนี้ถึงเป็นที่มีชื่อเสียงมายาวนานแล้วก็มีอัตราการแข่งขันที่สูงมากที่สุดแห่งหนึ่ง เหตุผลก็เพราะว่าโรงเรียนสามเสนวิทยาลัยนั้นก่อตั้งมานานมากแล้วตั้งแต่ปีพ.ศ. 2494 มีการพัฒนาและยกระดับสถานศึกษามาอย่างต่อเนื่องจนถึงปัจจุบันก็ได้ขยายแผนการเรียนที่เฉพาะด้านมากยิ่งขึ้น จึงทำให้โรงเรียนสามารถผลิตนักเรียนที่มีความสามารถออกมาเป็นจำนวนมาก เด็ก ๆ จึงมีความต้องการที่จะสอบเข้าแข่งขันเพื่อเข้าศึกษาต่อกันอย่างล้นหลามนั้นเองค่ะ หลักสูตรสามเสนวิทยาลัยม.ต้น ก่อนอื่นต้องมาดูหลักสูตรกันก่อนเลยค่ะ ว่าหลักสูตรชั้นมัธยมศึกษาตอนต้นแบ่งออกเป็นอะไรบ้าง

เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยา
เตรียมสอบเข้า ม.1 โรงเรียนสตรีวิทยากันเถอะ สวัสดีค่ะ มาพบกับแอดมินและ Nock Academy กับบทความเตรียมสอบเข้าม.1 กันอีกแล้วแต่วันนี้เรามาในบทความการสอบเข้าของโรงเรียนสตรีวิทยา โรงเรียนหญิงล้วนที่มีชื่อเสียงโด่งดังมานานกว่า 118 ปี อีกทั้งยังเคยเป็นสถานศึกษาของสมเด็จย่าและเคยได้รับเสด็จสมเด็จพระราชินีนาถเอลิซาเบธที่ 2 กล่าวได้ว่าเป็นโรงเรียนที่มีความผูกพันธ์กับราชวงศ์ของไทยและเป็นสถานที่ที่เคยต้อนรับราชวงศ์ชั้นสูงมาแล้วอีกด้วย นับเป็นความภาคภูมิใจแก่ผู้ที่ได้เข้าศึกษาที่โรงเรียนแห่งนี้เป็นอย่างมาก ไม่เพียงแต่เรื่องของความเก่าแก่และยาวนานของโรงเรียนที่ทำให้โรงเรียนสตรีวิทยานั้นเป็นที่รู้จัก แต่ในด้านของวิชาการก็มีความเข้มข้นและการแข่งขันที่สูงด้วยเช่นเดียวกัน โรงเรียนสตรีวิทยาในปัจจุบันมีการเรียนการสอนตั้งแต่ระดับชั้นมัธยมศึกษาปีที่ 1 ไปจนถึงมัธยมศึกษาปีที่ 6 ถือได้ว่าเป็นโรงเรียนมัธยมขนาดใหญ่ มีอัตราการสอบเข้าศึกษาที่สูงมากในแต่ละปี
สอบเข้าม.4 MWIT อยากสอบติดต้องเตรียมตัวอย่างไร
สอบเข้าม.4 มหิดลวิทยานุสรณ์ สวัสดีค่ะน้อง ๆ ทุกคน ใครที่กำลังหาข้อมูลเพื่อเตรียมตัวสอบเข้า ม.4 โรงเรียนมหิดลวิทยานุสรณ์กันอยู่บ้าง? วันนี้พี่แอดมิน NockAcademy ได้ทำการสรุปขั้นตอนการสมัครและการเตรียมตัวสอบมาให้แล้ว! มีรายละเอียดอะไรบ้างไปดูกันเลย… โรงเรียนมหิดลวิทยานุสรณ์หรือที่เราเรียนสั้น ๆ ว่า MWIT เป็นโรงเรียนที่บริหารและจัดการการเรียนการสอนในด้านวิทยาศาสตร์และคณิตศาสตร์โดยมุ่งเน้นไปที่ความเป็นเลิศในวิชาดังกล่าว และค้นหานักเรียนที่มีศักยภาพทางวิทยาศาสตร์และคณิตศาสตร์สูงเพื่อพัฒนาศักยภาพได้อย่างเต็มประสิทธิภาพในการเรียนการสอน ซึ่งช่วงการรับสมัครจะอยู่ในช่วงเดือนสิงหาคมของทุกปี ผู้ที่ต้องการสมัครสอบต้องมีคุณสมบัติดังนี้ คุณสมบัติของผู้สมัครสอบคัดเลือกเข้า ม.4 1. เป็นผู้ที่มีความต้องการเข้าเรียนในโรงเรียนมหิดลวิทยานุสรณ์และต้องการเข้าศึกษาต่อในระดับอุดมศึกษาทางด้านคณิตศาสตร์ วิทยาศาสตร์และเทคโนโลยี
บทความคณิตศาสตร์แนะนำ

รากที่สาม
ในบทตวามนี้เราจะได้เรียนรู้การหารากที่สามของจำนวนจริงใดๆ ซึ่งทำได้หลายวิธีเช่นเดียวกับการหารากที่สอง อาจใช้การแยกตัวประกอบ การประมาณ การเปิดตาราง และการใช้เครื่องคำนวณ แต่เนื่องจากการประมาณเป็นวิธีที่ยุ่งยาก ในที่นี้จึงจะกล่าวเฉพาะการหารากที่สามโดยการแยกตัวประกอบ การเปิดตาราง และการใช้เครื่องคำนวณ

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน
เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

ระบบจำนวนจริง
ระบบจำนวนจริง “ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ โครงสร้าง ระบบจำนวนจริง มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น โครงสร้าง จำนวนจริง จำนวนจริงคือจำนวนที่ประกอบไปด้วย
บทความภาษาอังกฤษแนะนำ

Past Perfect Continuous Tense แบบเข้าใจแจ่มแจ้ง
สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาทำทบทวนเกี่ยวกับ Past Perfect Continuous กันครับ ถ้าพร้อมแล้วเราไปเริ่มกันเลย

การออกเสียงพยัญชนะต้นคำและพยัญชนะท้ายคำที่ออกเสียงยากในภาษาอังกฤษ
สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การออกเสียงพยัญชนะต่างๆ ที่ขึ้นชื่อว่าออกเสียง “ยาก” ในภาษาอังกฤษ จะมีตัวอะไรกันบ้างนั้นเราไปดูกันเลยครับ

อนุประโยค Relative Clause ใช้อย่างไรในภาษาอังกฤษ
Relative Clause คืออะไร? สวัสดีค่ะนักเรียนม. 3 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า และจะใช้ตามหลัง Relative Pronoun เช่น who, whom, which, that, และ whose
บทความภาษาไทยแนะนำ
ศิลาจารึกหลักที่ 1 ถอดความหมายพร้อมเรียนรู้คุณค่าในเรื่อง
ศิลาจารึกหลักที่ 1มีความเป็นมาอย่างไร น้อง ๆ ก็คงจะได้เรียนรู้กันไปแล้ว วันนี้เรื่องที่เราจะมาศึกษากันต่อก็คือเนื้อหาเด่น ๆ ที่น่าสนใจและคุณค่าที่อยู่ในศิลาจารึกหลักที่ 1 กันค่ะ ไปดูพร้อมๆ กันเลยว่าในศิลาจารึกจะบันทึกเรื่องเล่าอะไรไว้บ้าง และมีคุณค่าด้านใด ศิลาจารึกหลักที่ 1 : ตัวบทที่น่าสนใจ พ่อกูชื่อศรีอินทราทิตย์ แม่กูชื่อนางเสือง พี่กูชื่อบานเมือง ตูมีพี่น้องท้องเดียวห้าคน

เรียนรู้และเข้าใจเรื่องคำซ้อนในภาษาไทย
คำซ้อน เป็นหนึ่งในบทเรียนหลักภาษาไทยเรื่องการสร้างคำ น้อง ๆ หลายคนอาจจะเคยสับสนกับวิธีสร้างคำซ้อน ไม่รู้ว่าแบบไหนกันแน่ที่เรียกว่าคำซ้อน เพราะภาษาไทยเรานั้นก็มีคำมากมายเหลือเกิน วันนี้เราจะมาเรียนรู้เรื่องคำซ้อนให้มากขึ้น รับรองว่าไม่ยากแน่นอนค่ะ คำซ้อน ความหมายของคำซ้อน คำซ้อน คือ คำที่เกิดจากการนำคำตั้งแต่ 2 คำ ขึ้นไปมาเรียงต่อกัน โดยคำที่นำมาซ้อนกันจะต้องเป็นคำที่มีความหมายเหมือนกัน ใกล้เคียงกัน ตรงข้ามกัน หรืออาจมีเสียงที่คล้ายกัน

แยกให้ออก บอกให้ถูกสำนวน สุภาษิต คำพังเพยแตกต่างกันอย่างไร?
บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาเข้าสู่เนื้อหาการเรียนภาษาไทยกันอีกเช่นเคย สำหรับวันนี้จะเป็นบทเรียนที่ทั้งสนุก มีสาระ และเป็นเนื้อหาที่เราต้องได้เจอบ่อย ๆ ในการเรียนภาษาไทยอย่างเรื่องสำนวน สุภาษิต และคำพังเพย น้อง ๆ อาจจะเคยได้ผ่านหูผ่านตากันมาบ้างเพราะเป็นบทเรียนที่ได้เริ่มเรียนตั้งแต่ช่วงประถมศึกษาแล้ว แต่วันนี้เราจะมาเรียนรู้ในเชิงลึกขึ้นไปอีกเกี่ยวกับวิธีการสังเกตระหว่างสำนวน สุภาษิต และคำพังเพยนั้นมีความเหมือน หรือแตกต่างกันอย่างไร มีตัวอย่างประกอบให้ทุกคนได้ดูด้วย ถ้าน้อง ๆ คนไหนพร้อมแล้วก็ไปลุยกับเนื้อหาของวันนี้ได้เลย สำนวน สำนวน

ดูคลิปบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้
สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ ภาษาไทย และชีววิทยา ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ
ล่าสุด

เรนจ์ของความสัมพันธ์
เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า = {2, 5,

โดเมนของความสัมพันธ์
โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า = {2, 3, 8}
กราฟของความสัมพันธ์
กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง
ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)} จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์
การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

Wh- Questions with do, does, did
สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การถามคำถามโดยใช้ Wh- Questions ในภาษาอังกฤษกันครับ ถ้าพร้อมแล้วไปดูกันเลย

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ
สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

Past Perfect Continuous Tense แบบเข้าใจแจ่มแจ้ง
สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาทำทบทวนเกี่ยวกับ Past Perfect Continuous กันครับ ถ้าพร้อมแล้วเราไปเริ่มกันเลย

ความสัมพันธ์
ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

ฟังก์ชันและกราฟของฟังก์ชัน
ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

โจทย์ปัญหาการหารทศนิยม
บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม

สมบัติของรูปสามเหลี่ยมมุมฉาก
ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

บทกลับของทฤษฎีบทพีทาโกรัส
ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน

เรนจ์ของความสัมพันธ์
เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า = {2, 5,

โดเมนของความสัมพันธ์
โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า = {2, 3, 8}
กราฟของความสัมพันธ์
กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง
ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)} จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์
การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

Wh- Questions with do, does, did
สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การถามคำถามโดยใช้ Wh- Questions ในภาษาอังกฤษกันครับ ถ้าพร้อมแล้วไปดูกันเลย

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ
สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

Past Perfect Continuous Tense แบบเข้าใจแจ่มแจ้ง
สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาทำทบทวนเกี่ยวกับ Past Perfect Continuous กันครับ ถ้าพร้อมแล้วเราไปเริ่มกันเลย

ความสัมพันธ์
ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

ฟังก์ชันและกราฟของฟังก์ชัน
ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

โจทย์ปัญหาการหารทศนิยม
บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม

สมบัติของรูปสามเหลี่ยมมุมฉาก
ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

บทกลับของทฤษฎีบทพีทาโกรัส
ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน