ยอดนิยม!

การใช้ประโยคคำสั่งในชีวิตประจำวัน
สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ประโยคคำสั่งในชีวิตประจำวัน (Imperative sentence in daily life)” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ประเภทของประโยค ” Imperative sentence “ Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย
อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ความเป็นมาของ อิศรญาณภาษิต (อ่านว่า

“บอกเวลาในภาษาอังกฤษ (Time in English) ”
Hi guys! สวัสดีค่ะนักเรียนชั้น ป.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการ “บอกเวลาในภาษาอังกฤษ (Telling Time in English) ” กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลย บทนำ ในบทเรียนนี้ครูขอยกตัวอย่างการบอกเวลาที่นิยมใช้กันโดยทั่วไปใน 2 รูปแบบ ตามที่มาของ Native English หรือ ภาษาอังกฤษของเจ้าของภาษา นะคะ ดังตัวอย่างดังต่อไปนี้

รูปแบบของประพจน์ที่สมมูลกัน
การสมมูลกันของประพจน์สำคัญอย่างไร?? ถือว่าสำคัญค่ะ เพราะถ้าเรารู้ว่าประพจน์ไหนสมมูลกับประพจน์อาจจะทำให้การตรวจสอบการเป็นสัจนิรันดร์และการหาค่าความจริงง่ายขึ้น หลังจากอ่านบทความนี้จบ น้องๆจะสามารถทำแบบฝึกหัดเรื่องการสมมูลได้และพร้อมทำข้อสอบได้แน่นอน
บทความเตรียมสอบแนะนำ

เตรียมสอบเข้า ม.1 โรงเรียนสามเสนวิทยาลัย
มาเตรียมสอบเข้าสามเสนม.1 กันเถอะ เตรียมสอบเข้าสามเสนกันเถอะ! วันนี้ Nockacademy มีข้อมูลการสอบเข้าม.1 โรงเรียนสามเสนวิทยามาฝากกันค่า น้อง ๆ คนไหนกำลังหาข้อมูลอยู่ต้องกดบุ๊คมาร์คไว้แล้วเพราะว่าเรารวบรวมข้อมูลมาแบบจัดเต็ม ไปดูกันเลยดีกว่าว่าต้องเตรียมตัวยังไงบ้าง Let’s go! ก่อนอื่นต้องขอเกริ่นเกี่ยวกับโรงเรียนสามเสนวิทยาลัยก่อนเลยค่ะ ว่าทำไมโรงเรียนนี้ถึงเป็นที่มีชื่อเสียงมายาวนานแล้วก็มีอัตราการแข่งขันที่สูงมากที่สุดแห่งหนึ่ง เหตุผลก็เพราะว่าโรงเรียนสามเสนวิทยาลัยนั้นก่อตั้งมานานมากแล้วตั้งแต่ปีพ.ศ. 2494 มีการพัฒนาและยกระดับสถานศึกษามาอย่างต่อเนื่องจนถึงปัจจุบันก็ได้ขยายแผนการเรียนที่เฉพาะด้านมากยิ่งขึ้น จึงทำให้โรงเรียนสามารถผลิตนักเรียนที่มีความสามารถออกมาเป็นจำนวนมาก เด็ก ๆ จึงมีความต้องการที่จะสอบเข้าแข่งขันเพื่อเข้าศึกษาต่อกันอย่างล้นหลามนั้นเองค่ะ หลักสูตรสามเสนวิทยาลัยม.ต้น ก่อนอื่นต้องมาดูหลักสูตรกันก่อนเลยค่ะ ว่าหลักสูตรชั้นมัธยมศึกษาตอนต้นแบ่งออกเป็นอะไรบ้าง

เตรียมสอบเข้า ม.1 โรงเรียนสวนกุหลาบวิทยาลัย
เตรียมสอบเข้าม.1 โรงเรียนสวนกุหลาบวิทยาลัย สวัสดีค่ะน้อง ๆ วันนี้มาพบกับพี่แอดมินและ Nock Academy อีกเช่นเคย ซึ่งเรายังคงอยู่กับหัวข้อของการเตรียมสอบเข้าม.1กันนะคะ วันนี้แอดมินจะพาน้อง ๆ ไปรู้จักกับโรงเรียนสวนกุหลาบวิทยาและการเตรียมตัวสอบเข้าในระดับชั้นม.1ของโรงเรียนแห่งนี้กันค่ะ ก่อนอื่นแอดมินต้องขอกล่าวประวัติคร่าว ๆ ของโรงเรียนให้ทุกคนได้รู้จักกันก่อนนะคะ โรงเรียนสวนกุหลาบวิทยาเป็นโรงเรียนชายล้วนที่ก่อตั้งขึ้นมาในสมัยพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว (รัชกาลที่ 5) ถือเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย ที่มีความโดดเด่นในเรื่องของวิชาการ ภาษาและความเป็นผู้นำ โดยศิษย์เก่าที่สำเร็จการศึกษามาจากโรงเรียนสวนกุหลาบวิทยาลัยแห่งนี้หลายคนเป็นผู้ที่มีชื่อเสียงและประสบความเร็จจึงทำให้ชื่อเสียงของโรงเรียนสวนกุหลาบวิทยาลัยนั้นเป็นที่รู้จักกันอย่างแพร่หลายในสังคมไทยมาอย่างยาวนาน หลักสูตรสวนกุหลาบวิทยาลัย ม.ต้น ในปัจจุบันโรงเรียนสวนกุหลาบวิทยาลัยได้มีการปรังปรุงและพัฒนาหลักสูตรให้มีความเท่าทันสังคมไทยในปัจจุบันมากยิ่งขึ้น
สอบเข้าม.4 MWIT อยากสอบติดต้องเตรียมตัวอย่างไร
สอบเข้าม.4 มหิดลวิทยานุสรณ์ สวัสดีค่ะน้อง ๆ ทุกคน ใครที่กำลังหาข้อมูลเพื่อเตรียมตัวสอบเข้า ม.4 โรงเรียนมหิดลวิทยานุสรณ์กันอยู่บ้าง? วันนี้พี่แอดมิน NockAcademy ได้ทำการสรุปขั้นตอนการสมัครและการเตรียมตัวสอบมาให้แล้ว! มีรายละเอียดอะไรบ้างไปดูกันเลย… โรงเรียนมหิดลวิทยานุสรณ์หรือที่เราเรียนสั้น ๆ ว่า MWIT เป็นโรงเรียนที่บริหารและจัดการการเรียนการสอนในด้านวิทยาศาสตร์และคณิตศาสตร์โดยมุ่งเน้นไปที่ความเป็นเลิศในวิชาดังกล่าว และค้นหานักเรียนที่มีศักยภาพทางวิทยาศาสตร์และคณิตศาสตร์สูงเพื่อพัฒนาศักยภาพได้อย่างเต็มประสิทธิภาพในการเรียนการสอน ซึ่งช่วงการรับสมัครจะอยู่ในช่วงเดือนสิงหาคมของทุกปี ผู้ที่ต้องการสมัครสอบต้องมีคุณสมบัติดังนี้ คุณสมบัติของผู้สมัครสอบคัดเลือกเข้า ม.4 1. เป็นผู้ที่มีความต้องการเข้าเรียนในโรงเรียนมหิดลวิทยานุสรณ์และต้องการเข้าศึกษาต่อในระดับอุดมศึกษาทางด้านคณิตศาสตร์ วิทยาศาสตร์และเทคโนโลยี
บทความคณิตศาสตร์แนะนำ

โจทย์ปัญหาการนําเสนอข้อมูล
บทความนี้จะยกตัวอย่างเกี่ยวกับโจทย์ปัญหาการนำเสนอข้อมูลให้น้องๆทราบถึงวิธีคิดหรือวิธีทำเพื่อหาคำตอบที่ถูกต้อง

การให้เหตุผลแบบอุปนัย
การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น.
บทความนี้เป็นเรื่องการแก้ โจทย์ปัญหาเกี่ยวกับ ห.ร.ม. และ ค.ร.น ซึ่งโจทย์ที่ได้นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเลือกใช้วิธีการแก้โจทย์ปัญหา รวมไปถึงการแสดงวิธีทำอย่างละเอียด หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน ซึงเป็นเเรื่องย่อยของ ห.ร.ม. และ ค.ร.น. ป.6
บทความภาษาอังกฤษแนะนำ

การใช้ Yes/No Questions และ Wh-Questions
สวัสดีค่ะนักเรียนชั้นม.3 ทุกคน วันนี้ครูจะพาไปตะลุยตัวอย่างและวิธีการแต่งประโยคคำถาม 2กลุ่ม ได้แก่ “การใช้ Yes/No Questions และ Wh-Questions” หากพร้อมแล้วก็ไปลุยกันเลยจร้า Yes/No Questions คืออะไร? Yes/ No Questions ก็คือ กลุ่มคำถามที่ต้องการคำตอบแน่ชัดว่า Yes ใช่ หรือ
การถามทางในภาษาอังกฤษ Asking for Direction in English
สวัสดีค่ะนักเรียนป.6 ที่น่ารักทุกคน เคยมั้ยที่เราเจอฝรั่งถามทางแล้วตอบไม่ได้ ทำได้แค่ชี้ๆ แล้วก็บ๊ายบาย หากทุกคนเคยเจอปัญหานี้ ต้องท่องศัพท์และรู้โครงสร้างประโยคที่สำคัญในการถามทางแล้วล่ะ ไปลุยกันเลย การถามทางในภาษาอังกฤษ Asking for Direction in English การถามทิศทางจะต้องมีประโยคเกริ่นก่อนเพื่อให้คนที่เราถาม ตั้งตัวได้ว่า กำลังจะโดนถามอะไร ยังไง ซึ่งเราสามารถถามได้ทั้ง คำถามแบบสุภาพเมื่อพูดกับคนที่เราไม่คุ้นเคย หรือ คำถามทั่วไปเมื่อพูดกับคนใกล้ตัว

การใช้ Possessive pronoun โดยใช้ Whose/ Which ร่วมด้วย
สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนค่ะ วันนี้เราจะไปเรียนรู้เรื่อง การใช้ Possessive pronoun โดยใช้ Whose/ Which ร่วมด้วย Let’s go! ไปลุยกันเลยจ้า Possessive pronoun คืออะไร What’s mine is yours, my dear.
บทความภาษาไทยแนะนำ

กาพย์พระไชยสุริยา เรียนรู้ความเป็นมาของแบบเรียนภาษาไทยอันทรงคุณค่า
กาพย์พระไชยสุริยา กาพย์พระไชยสุริยาเป็นอีกหนึ่งบทเรียนที่น้อง ๆ ทุกคนจะได้ศึกษากัน แต่รู้ไหมคะว่าคำกาพย์ที่แต่งโดยสุนทรภู่นี้เป็นกาพย์แบบไหน มีประวัติความเป็นมาอย่างไร เหตุใดถึงมาอยู่ในแบบเรียนวิชาภาษาไทยได้ วันนี้เราจะพาน้อง ๆ ไปทำความรู้จักกับประวัติความเป็นมาของกาพย์พระไชยสุริยา รวมถึงเรื่องลักษณะคำประพันธ์และสรุปเนื้อเรื่องโดยย่อ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ ความเป็นมาของกาพย์พระไชยสุริยา กาพย์พระไชยสุริยา เป็นวรรณคดีคำกาพย์ที่สุนทรภู่แต่ง มีความยาว 1 เล่มสมุดไทย นักวรรณคดีและนักวิชาการสันนิษฐานว่าสุนทรภู่แต่งขึ้นขณะบวชอยู่ที่วัดเทพธิดาระหว่าง

วัฒนธรรมกับภาษา ความสัมพันธ์ของสองสิ่งที่มนุษย์สร้างขึ้น
มนุษย์ก่อให้เกิดภาษา และภาษาก็ก่อให้เกิดวัฒนธรรม น้อง ๆ สงสัยกันหรือไม่คะว่ามนุษย์ วัฒนธรรมกับภาษา เกี่ยวข้องและเชื่อมโยงกันได้อย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงเรื่องราวที่ว่านี่กันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้กันเลยค่ะ มนุษย์ วัฒนธรรมกับภาษา วัฒนธรรม คืออะไร วัฒนธรรมเป็นสิ่งที่มนุษย์สร้างขึ้น รากศัพท์ในภาษาละตินมีความหมายว่าการเพาะปลูก แต่ไม่ได้ใช้แค่ในเชิงเกษตรกรรม แต่จะรวมไปถึงการปลูกฝังในด้านต่าง ๆ ทั้งให้การศึกษา ความเคารพ ซึ่งทั้งหมดนี้ล้วนเป็นสิ่งที่มนุษย์เปลี่ยนแปลง

คำซ้ำคืออะไร เรียนรู้และเข้าใจหลักการสร้างคำอย่างง่าย
จากที่ได้เรียนเรื่องการสร้างคำประสมและคำซ้อนไปแล้ว บทเรียนหลักภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้การสร้างคำอีกหนึ่งชนิดที่สำคัญไม่แพ้สองคำก่อนหน้า นั่นก็คือ คำซ้ำ นั่นเองค่ะ คำซ้ำคืออะไร มีวิธีสร้างคำได้อย่างไรบ้าง วันนี้เราไปทำความเข้าใจเกี่ยวกับเรื่องนี้พร้อม ๆ กันเลยค่ะ คำซ้ำ คำซ้ำคืออะไร? คำซ้ำ หมายถึง การสร้างคำขึ้นใหม่ โดยนำคำมูลซึ่งส่วนมากเป็นคำพยางค์เดียวมาซ้ำกันแล้วมีความหมายเปลี่ยนแปลงไป อาจเน้นหนักขึ้น หรือเบาลง

ดูคลิปบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้
สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ ภาษาไทย และชีววิทยา ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ
ล่าสุด

เรนจ์ของความสัมพันธ์
เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า = {2, 5,

โดเมนของความสัมพันธ์
โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า = {2, 3, 8}
กราฟของความสัมพันธ์
กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง
ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)} จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์
การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

Wh- Questions with do, does, did
สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การถามคำถามโดยใช้ Wh- Questions ในภาษาอังกฤษกันครับ ถ้าพร้อมแล้วไปดูกันเลย

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ
สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

Past Perfect Continuous Tense แบบเข้าใจแจ่มแจ้ง
สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาทำทบทวนเกี่ยวกับ Past Perfect Continuous กันครับ ถ้าพร้อมแล้วเราไปเริ่มกันเลย

ความสัมพันธ์
ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

ฟังก์ชันและกราฟของฟังก์ชัน
ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

โจทย์ปัญหาการหารทศนิยม
บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม

สมบัติของรูปสามเหลี่ยมมุมฉาก
ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

บทกลับของทฤษฎีบทพีทาโกรัส
ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน

เรนจ์ของความสัมพันธ์
เรนจ์ของความสัมพันธ์ เรนจ์ของความสัมพันธ์ r คือ สมาชิกตัวหลังของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหลัง เช่น = {(2, 2), (3, 5), (8, 10)} จะได้ว่า = {2, 5,

โดเมนของความสัมพันธ์
โดเมนของความสัมพันธ์ โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย คือสมาชิกตัวหน้า เช่น = {(2, 2), (3, 4), (8, 9)} จะได้ว่า = {2, 3, 8}
กราฟของความสัมพันธ์
กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง
ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง เป็นการส่งสมาชิกจากของเซตหนึ่งเรียกเซตนั้นว่าโดเมน ส่งไปให้สมาชิกอีกเซตหนึ่งเซตนั้นเรียกว่าเรนจ์ จากบทความก่อนหน้าเราได้พูดถึงฟังก์ชันและการส่งสมาชิกในเซตไปแล้วบางส่วน ในบทความนี้เราจะได้ทำความเข้าใจเกี่ยวกับฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งมากขึ้น จากที่เรารู้ว่าเซตของคู่อันดับเซตหนึ่งจะเป็นฟังก์ชันได้นั้น สมาชิกตัวหน้าต้องไปเหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่งเป็นการกำหนดขอบเขตให้ฟังก์ชันนั้นแคปลงกว่าเดิม เช่น {(1, a), (2, b), (3, a), (4, c)} จากเซตของคู่อันดับเราสมารถตอบได้เลยว่าเป็นฟังก์ชัน เพราะสมาชิกตัวหน้าไม่เหมือนกัน แต่ฟังก์ชันจากเซตหนึ่งไปอีกเซตหนึ่ง คือการที่เรามีเซต 2 เซต แล้วเราส่งสมาชิกในเซตหนึ่งไปอีกเซตหนึ่ง

การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์
การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ การตรวจสอบคู่อันดับที่เป็นความสัมพันธ์ คือการตรวจสอบคู่อันดับว่าคู่ไหนเป็นความสัมพันธ์ที่ตรงกับเงื่อนไขที่กำหนด จากที่เรารู้กันในบทความเรื่อง ความสัมพันธ์ว่า r จะเป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B แต่ถ้าเราใส่เงื่อนไขบางอย่างเข้าไป ความสัมพันธ์ r ที่ได้ก็อาจจะจะเปลี่ยนไปด้วย แต่ยังคงเป็นสับเซตของ A × B เหมือนเดิม

Wh- Questions with do, does, did
สวัสดีน้องๆ ม. 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การถามคำถามโดยใช้ Wh- Questions ในภาษาอังกฤษกันครับ ถ้าพร้อมแล้วไปดูกันเลย

Phrasal Verbs: กริยาวลีในภาษาอังกฤษ
สวัสดีน้องๆ ม. 4 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ two-word verbs และ three-word verb ในภาษาอังกฤษกันครับ จะเป็นอย่างไรเราไปดูกันเลย

Past Perfect Continuous Tense แบบเข้าใจแจ่มแจ้ง
สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาทำทบทวนเกี่ยวกับ Past Perfect Continuous กันครับ ถ้าพร้อมแล้วเราไปเริ่มกันเลย

ความสัมพันธ์
ความสัมพันธ์ ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ คู่อันดับ ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที เช่น คู่อันดับ (x, y) โดย x

ฟังก์ชันและกราฟของฟังก์ชัน
ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

โจทย์ปัญหาการหารทศนิยม
บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

สามเหลี่ยมที่เท่ากันทุกประการแบบ มุม-ด้าน-มุม
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ มุม-ด้าน-มุม

สมบัติของรูปสามเหลี่ยมมุมฉาก
ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

บทกลับของทฤษฎีบทพีทาโกรัส
ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส

สามเหลี่ยมที่เท่ากันทุกประการแบบ ด้าน-ด้าน-ด้าน
ในบทความนี้จะกล่าวถึงหลักการของการพิสูจน์ความเท่ากันทุกประการของสามเหลี่ยมแบบ ด้าน-ด้าน-ด้าน