ความน่าจะเป็นของเหตุการณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความน่าจะเป็นของเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐

ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ

โดยที่  n(E)  แทน  จำนวนผลลัพธ์ทั้งหมดของเหตุการณ์ที่เราสนใจ

                       n(S)  แทน  จำนวนผลลัพธ์ทั้งหมดที่จะเกิดขึ้นได้

  P(E)  แทน ความน่าจะเป็นของเหตุการณ์

ดังนั้น   P(E)   =  \frac{n(E)}{n(S)}

ข้อควรจำ

  1. 0 ≤ P(E) ≤ 1
  2. ถ้า P(E) = 0  เหตุการณ์นั้นๆ จะไม่มีโอกาสเกิดขึ้นเลย
  3. ถ้า P(E) = 1  เหตุการณ์นั้นๆ เกิดขึ้นแน่นอน

ตัวอย่างที่ 1

ตัวอย่างที่ 1 จากการโยนลูกเต๋า 2 ลูก  1 ครั้ง  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

วิธีทำ  หา S จากการทอดลูกเต๋า 2  ลูก 1 ครั้ง ได้ดังนี้

S  =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

            (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

                      (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(S)  =  36

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

อธิบายเพิ่มเติม : ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 หมายความว่า เมื่อนำแต้มของลูกเต๋า 2 ลูกมาบวกกัน แล้วได้ผลลัพธ์เท่ากับ 11 และมากกว่า 11

ให้ E1 แทน เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

E1           =    { (5, 6) , (6, 5 ) , ( 6, 6) }

n (E1)     =    3

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{3}{36} = \frac{1}{12}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 เท่ากับ \frac{1}{12}

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

อธิบายเพิ่มเติม : ผลรวมของแต้มเป็นจำนวนคู่ จะต้องเกิดจากแต้มคี่ทั้งสองลูกและแต้มคู่ทั้งสองลูก

ให้ E2 แทน เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

E2  =  { (1,1) , (1,3) , (1,5) , (2,2) , (2,4) , (2,6) , (3,1) , (3,3) , (3,5) , (4,2) , (4,4) , (4,6) ,

                         (5,1) ,(5,3) ,(5,5),(6,2) ,(6,4) ,(6,6) }

n(E2)   =  18

P(E2)   =  \frac{18}{36}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่ เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

อธิบายเพิ่มเติม : ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก หมายความว่า ขึ้นแต้ม 1 หนึ่งลูกหรือสองลูกก็ได้

ให้ E3  แทน เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

E3           =   { (1,1) ,(1,2) ,((1,3) ,(1,4) ,(1,5) ,(1,6) ,(2,1) ,(3,1) ,(4,1) ,(5,1) ,(6,1) }

n(E3)      =   11

P(E3)      =  \frac{11}{36}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก เท่ากับ \frac{11}{36}

ตัวอย่างที่ 2

ตัวอย่างที่ 2    ครอบครัวครอบครัวหนึ่ง  มีบุตร 2 คน  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

วิธีทำ     ให้         ช  แทน บุตรชาย

       ญ  แทน บุตรหญิง

  S =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

   n(S) = 4

โดยที่  สมาชิกตัวแรกของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนแรก และสมาชิกตัวที่สองของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนที่สอง

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

ให้ E1 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

E1 = {(ช, ญ)}

n (E1)     =    1

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{1}{4}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง เท่ากับ \frac{1}{4}

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

ให้ E2 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

E2  =  { (ช, ญ) , (ญ, ช)) }

n(E2)   =  2

P(E2)   =  \frac{2}{4}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

เนื่องจากครอบครัวนี้มีบุตรเพียง 2 คนเท่านั้น เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน จึงเป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน เท่ากับ 0

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

ให้ E3  แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

E3           =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

n(E3)      =   4

P(E3)      =  \frac{4}{4} = 1

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้  เท่ากับ  1

ตัวอย่างที่ 3

ตัวอย่างที่ 3    โยนเหรียญ 1 เหรียญ 3 ครั้ง จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

วิธีทำ  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มนี้มี 8 แบบ ดังนี้

ความน่าจะเป็นของเหตุการณ์ 3

  S =  {HHH, HHT, HTH, HTT, THH, THT, TTH , TTT}

  n(S) = 8

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

ให้ E1 แทน เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

E1 = {HHH, HHT, HTH , THH}

n (E1)     =    4

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{4}{8}\frac{1}{2}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย เท่ากับ \frac{1}{2}

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

ให้ E2 แทน เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

E2  =  { HTT, TTH , TTT }

n(E2)   =  3

P(E2)   =  \frac{3}{8}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยติดต่อกัน เท่ากับ  \frac{3}{8}

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

อธิบายเพิ่มเติม : เหรียญออกหัวอย่างน้อยหนึ่งเหรียญ  หมายความว่า เหรียญออกหัวหนึ่งเหรียญ สองเหรียญหรือสามเหรียญก็ได้

ให้ E3  แทน เหตุการณ์ที่ออกหัวอย่างน้อย 1 เหรียญ

E3           =  {HHH, HHT, HTH, HTT, THH, THT , TTH}

n(E3)      =   7

P(E3)      =  \frac{7}{8}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ เท่ากับ  \frac{7}{8}

ตัวอย่างที่ 4

ตัวอย่างที่ 4  สุ่มหยิบลูกบอล 1 ลูก  จากกล่องที่มีลูกบอลสีขาว 5 ลูก จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

วิธีทำ     กำหนดให้  ข₁, ข₂, ข₃, ข₄  และ ข₅  แทนลูกบอลสีขาวทั้ง 5 ลูก

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มมี 5 แบบ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

นั่นคือ จำนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ เท่ากับ 5  หรือ  n(S) = 5

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

เหตุการณ์ที่หยิบได้ลูกบอลสีขาว มีผลลัพธ์ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

จะได้  จำนวนผลลัพธ์ของเหตุการณ์เป็น 5   หรือ  n(E) = 5

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีขาว เท่ากับ  \frac{5}{5} = 1  หรือ P(E) = 1

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

เนื่องจากไม่มีลูกบอลสีน้ำเงินอยู่ภายในกล่อง

จะได้  จำนวนผลลัพธ์ที่หยิบได้ลูกบอลสีน้ำเงิน เป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน เท่ากับ 0

จาก ตัวอย่างที่ 4 จะสังเกตเห็นว่าเหตุการณ์ที่หยิบได้ลูกบอลสีขาวเป็น เหตุการณ์ที่เกิดขึ้นแน่นอน มีความน่าจะเป็นของเหตุการณ์ เท่ากับ 1 และเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงินเป็น เหตุการณ์ที่ไม่เกิดขึ้นแน่นอน มีความน่าจะเป็น เท่ากับ 0

วิดีโอ ความน่าจะเป็นของเหตุการณ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Passive voice + Active Voice

การใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน 

สวัสดีค่ะนักเรียนชั้นม.1 ที่น่ารักทุกคน วันนี้เราจะไปดูการใช้ Passive Voice และ Active Voice ในรูปปัจจุบัน กัน ถ้าพร้อมแล้วก็ไปลุยกันโลดเด้อ   ความแตกต่างของ Passive Voice VS Active Voice       Passive Voice คือประโยคที่เน้นกรรม เน้นว่าใครถูกทำ  Active

ตัวบ่งปริมาณ

ตัวบ่งปริมาณและค่าความจริงของตัวบ่งปริมาณ

ตัวบ่งปริมาณ ตัวบ่งปริมาณ คือ สัญลักษณ์หรือข้อความที่เมื่อเราเอาไปเติมใน “ประโยคเปิด” แล้วจะทำให้ประโยคนั้นกลายเป็นประพจน์ ประโยคเปิด คือประโยคบอกเล่าหรือปฏิเสธที่ติดค่าตัวแปรที่ยัง “ไม่รู้ว่าเป็นจริงหรือเท็จ” โดยตัวแปรนั้นเป็นสมาชิกของเอกภพสัมพัทธ์ (Universe : U) ประโยคเปิด ยังไม่ใช่ประพจน์ (แต่เกือบเป็นแล้ว) เพราะเรายังไม่รู้ว่าเป็นจริงหรือเท็จ เช่น  “x มากกว่า 3” จะเห็นว่าตัวแปร คือ x ซึ่งเราไม่รู้ว่า x

เสียงพยัญชนะ

การออกเสียงพยัญชนะต้นคำและพยัญชนะท้ายคำที่ออกเสียงยากในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 3 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การออกเสียงพยัญชนะต่างๆ ที่ขึ้นชื่อว่าออกเสียง “ยาก” ในภาษาอังกฤษ จะมีตัวอะไรกันบ้างนั้นเราไปดูกันเลยครับ

Profile Linking Verbs

มาทำความรู้จักกับ Linking Verbs ให้มากขึ้น

สวัสดีค่ะนักเรียนม.1 ที่น่ารักทุกคน วันนี้เราจะไปรู้จักกับ Linking Verbs ให้มากขึ้น แต่ก่อนอื่นไปดูความหมายของ Linking Verbs กันก่อนนะคะ ไปลุยกันเลย มาทำความรู้จักกับ Linking Verbs     Linking verbs คืออะไรกันนะ Linking แปลว่า การเชื่อม มาจากรากศัพท์ link ที่เป็นกริยาเติมด้วย

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

การบวก ลบ คูณ หารจำนวนเต็ม

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้ การบวกจำนวนเต็ม การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้ |-12|=   12 |4|=   4

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1