คณิตศาสตร์ ม.3

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

การแก้ระบบสมการเชิงเส้นสองตัวแปร

การแก้ระบบสมการเชิงเส้นสองตัวแปร

การแก้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร  โดยการเลือกกำจัดตัวแปรใดตัวแปรหนึ่ง(x) เมื่อเลือกกำจัด x จะได้ค่า y แล้วนำค่าของตัวแปร(y) มาแทนค่าในสมการเพื่อหาค่าของตัวแปรอีกหนึ่งตัวแปร (x) ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ⇐⇐ ให้ a, b, c, d, e และ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐ สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x +

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

การทดลองสุ่มและเหตุการณ์

การทดลองสุ่มและเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง การทดลองสุ่มและเหตุการณ์ ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ และอธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง การทดลองสุ่มและเหตุการณ์ น้องๆสามารถทบทวน ความน่าจะเป็น ได้ที่  ⇒⇒ ความน่าจะเป็น ⇐⇐ การทดลองสุ่ม การทดลองสุ่ม  คือ การทดลองซึ่งทราบว่าผลลัพธ์ที่จะเกิดขึ้นอาจจะเป็นอะไรได้บ้าง  แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าในแต่ละครั้งที่ทำการทดลอง  ผลที่เกิดขึ้นจากการทดลองจะเป็นอะไรในบรรดาผลลัพธ์ที่อาจเป็นไปได้เหล่านั้น  เช่น การโยนเหรียญซึ่งมีผลลัพธ์ที่จะเกิดขึ้นได้ 2 แบบ คือ หัวหรือก้อย เมื่อโยนเหรียญ

สถิติ (เส้นโค้งความถี่)

สถิติ (เส้นโค้งความถี่)

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐ เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม

ความน่าจะเป็น

ความน่าจะเป็น

บทความนี้จะแนะนำให้รู้จักกับ ความน่าจะเป็น ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ รวมถึงคำที่เกี่ยวข้องกับความน่าจะเป็น เช่นการทดลองสุ่ม ปริภูมิตัวอย่าง และเหตุการณ์ ดังต่อไปนี้ ความน่าจะเป็น ความน่าจะเป็น (Probability)  เป็นจำนวนที่ใช้เพื่อบอกโอกาสที่เหตุการณ์หนึ่ง ๆ จะเกิดขึ้น ซึ่งมี 3 ลักษณะ คือ ไม่เกิดขึ้นอย่างแน่นอนจะมีค่าความน่าจะเป็นเท่ากับ 0 อาจจะเกิดขึ้นหรือไม่ก็ได้ จะมีค่าความน่าจะเป็นอยู่ระหว่าง 0 กับ 1

สถิติ-ค่ากลางของข้อมูลการกระจายของข้อมูล

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

การแก้อสมการเชิงเส้นตัวแปรเดียว

การแก้อสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ หลักการแก้อสมการเชิงเส้นตัวแปรเดียว ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้ จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ) ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้

กราฟแสดงคำตอบของปกอสมการเชิงเส้นตัวแปรเดียว

กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้แนะนำการเขียน กราฟแสดงคำตอบของอสมการเชิงเส้นตัวแปรเดียว  ซึ่งจะเชื่อมโยงกับสัญลักษณ์ของอสมการทั้ง 5 สัญลักษณ์ คือ มากกว่า (>), น้อยกว่า (<), มากกว่าหรือเท่ากับ (≥), น้อยกว่าหรือเท่ากับ (≤) และ ไม่ท่ากับ(≠) โดยเขียนแสดงบนเส้นจำนวน จุดทึบและจุดโปร่ง เราจะเลือกใช้จุดทึบ (•) และจุดโปร่ง (°) แทนสัญลักษณ์อสมการ ดังนี้ มากกว่า

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

เมื่อฉันโดนงูรัด!: เรียนรู้การใช้ Passive Voice แบบผ่อน ‘คลายย’

น้องๆ ทราบกันมั้ยว่าในไวยากรณ์ภาษาอังกฤษจะมีสิ่งที่เรียกว่า ‘Voice’ ถ้ายังไม่ทราบหรือเคยได้ยินแต่ยังไม่แน่ใจว่าคืออะไรวันนี้เราจะมาเรียนรู้เรื่อง Voice ในภาษาอังกฤษแบบเข้าใจง่ายๆ กันครับ

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้