ปริมาตรของปริซึมและทรงกระบอก

ในบทความนี้จะกล่าวความหมายและหกในการคิดคำนวณหาปริมาตรของปริซึมและทรงกระบอก
Picture of tucksaga
tucksaga

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในทางคณิตศาสตร์ เราอาจคำนวณหาปริมาตรของสิ่งของต่างๆได้โดยไม่ต้องใช้การแทนที่น้ำ ในบทเรียนนี้นักเรียนจะได้เรียนการหาปริมาตรของรูปเรขาคณิตสามมิติหลายชนิด ซึ่งในกรณีที่รูปเรขาคณิตนั้นมีฐานทั้งสองข้างเป็นรูปเหลี่ยมที่เท่ากันทุกประการหรือเป็นวงกลมที่เท่ากันทุกประการและอยู่ในระนาบที่ขนานกัน นั่นมายถึง ปริมาตรของปริซึมและทรงกระบอก

ปริซึมและทรงกระบอกในชีวิตประจำวัน

  1. บุคคลในหลายสาขาอาชีพต้องเข้าใจและชำนาญในเรื่องของการวัด การชั่ง การตวง และเรื่องที่เกี่ยวกับปริมาตรเป็นอย่างดี ไม่เช่นนั้นอาจทำให้เกิดข้อผิดพลาดและเสียหาย เช่น วิศวกรอาจออกแบบโครงสร้างของสิ่งก่อสร้างต่าง ๆ ได้ไม่แข็งแรงพอ นักวิทยาศาสตร์อาจทำการทดลองแล้วผิดพลาดทำให้เกิดการระเบิด หรือพ่อครัวอาจปรุงอาหารแล้วได้รสชาติไม่คงที่
  2. สำหรับบุคคลทั่วไป การเรียนรู้และใช้ความรู้เกี่ยวกับปริมาตรจะช่วยให้เราเป็นผู้บริโภคที่ฉลาดในการเลือกซื้อสินค้า รู้จักเปรียบเทียบราคาของสินค้าต่อหน่วยปริมาตร ทำให้เลือกซื้อสินค้าได้ถูกกว่าและช่วยให้เราประหยัดค่าใช้จ่ายได้
  3. เมื่อกล่าวถึงการวัดความจุ จะหมายถึงการหาปริมาตรการหาปริมาตรของวัตถุใด ๆ อาจทำได้โดยการจมวัตถุนั้นลงในภาชนะที่มีน้ำอยู่ ตราบใดที่วัตถุไม่ละลายหรือดูดซับน้ำ ปริมาตรของน้ำส่วนที่เพิ่มขึ้น หรือปริมาตรของน้ำที่ล้นออกมาในกรณีที่เดิมมีน้ำอยู่เต็มภาชนะพอดี จะเท่ากับปริมาตรของวัตถุนั้น วิธีการนี้เป็นการหาปริมาตรของวัตถุโดยการแทนที่น้ำ

ปริมาตรทรงกระบอก

ปริมาตรของปริซึม

            ทรงสี่เหลี่ยมมุมฉากเป็นปริซึมชนิดหนึ่งที่เรียกว่า ปริซึมสี่เหลี่ยมมุมฉาก นักเรียนรู้จักการหาปริมาตรของทรงสี่เหลี่ยมมุมฉากมาแล้ว ดังนั้น สูตรการหาปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก จึงเป็นสูตรเดียวกันกับสูตรการหาปริมาตรของทรงสี่เหลี่ยมมุมฉาก กล่าวคือ

 

ปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก = ความกว้าง x ความยาว x ความสูง

                                  =พื้นที่ฐาน x ความสูง

 

            สำหรับปริมาตรของปริซึมสามเหลี่ยมใด ๆ หาได้โดยอาศัยวิธีหาปริมาตรของปริซึมสามเหลี่ยมมุมฉากดังนี้

            ให้นักเรียนพิจารณาการตัดปริซึมสี่เหลี่ยมมุมฉากตามระนาบที่แรเงาดังแสดงในรูป จะได้รูปเรขาคณิตสามมิติสองรูปที่มีขนาดและรูปร่างเป็นอย่างเดียวกัน รูปเรขาคณิตสามมิติทั้งสองรูปเป็นปริซึมสามเหลี่ยมมุมฉากที่มีปริมาตรเท่ากัน แต่ละรูปมีปริมาตรเป็นครึ่งหนึ่งของปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก

ปริซึม

            เราสามารถนำสูตรการหาปริมาตรของปริซึมสามเหลี่ยมใด ๆ ไปหาสูตรของปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมได้โดยแบ่งฐานของปริซึมหลายเหลี่ยมนั้นออกเป็นรูปสามเหลี่ยมหลาย ๆ รูปตัวอย่างเช่นเราแบ่งปริซึมห้าเหลี่ยมซึ่งสูง h หน่วยออกเป็นปริซึมสามเหลี่ยม 3 รูปได้ ดังนี้

ปริมาตรของปริซึม

ปริมาตรของทรงกระบอก

            นักเรียนลองนึกภาพของรูปหลายเหลี่ยมด้านเท่ามุมเท่าตามลำดับที่กำหนดให้ข้างล่างนี้ เริ่มจากรูปสามเหลี่ยมด้านเท่า รูปสี่เหลี่ยมจัตุรัส รูปห้าเหลี่ยมด้านเท่ามุมเท่า รูปหกเหลี่ยมด้านเท่ามุมเท่า รูปเจ็ดเหลี่ยมด้านเท่ามุมเท่า และรูปแปดเหลี่ยมด้านเท่ามุมเท่า จะสังเกตเห็นว่ายิ่งจำนวนด้านมีมากขึ้นเท่าใด รูปหลายเหลี่ยมด้านเท่ามุมเท่าเหล่านั้นก็จะมีรูปร่างใกล้เคียงกับวงกลมมากขึ้นตามไปด้วย

รูปหลายเหลี่ยม

            เราอาจกล่าวได้ว่า ทรงกระบอกจึงมีลักษณะใกล้เคียงกับปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนด้านมาก ๆ ดังนั้นการหาปริมาตรของทรงกระบอกจึงหาได้ในทำนองเดียวกันกับการหาปริมาตรของปริซึมนั่นเอง

ปริมาตรทรงกระบอก

คลิปวิดีโอเรื่องปริมาตรของปริซึมและทรงกระบอก

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ

การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ บทความนี้ได้รวบรวมความรู้เรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร โดยใช้กราฟ ทำได้โดยนำตัวเลขแทนค่าตัวแปร แล้วจะได้กราฟของสมการเชิงเส้นสองตัวแปรเป็นกราฟเส้นตรง สังเกตกราฟที่ได้ว่าตัดกัน ขนานกัน หรือทับกัน ลักษณะกราฟจะบอกคำตอบของระบบสมการ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง กราฟของสมการเชิงเส้นสองตัวแปร สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ กราฟของสมการเชิงเส้นสองตัวแปร ⇐⇐ สมการเชิงเส้นสองตัวแปร  คือ สมการที่มีตัวแปรสองตัว  เลขชี้กำลังของตัวแปรแต่ละตัวเป็น 1 และไม่มีการคูณกันของตัวแปร  เช่น 2x +

ความน่าจะเป็นของเหตุการณ์

ความน่าจะเป็นของเหตุการณ์ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐ ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ โดยที่ 

แนะนำอสมการเชิงเส้นตัวแปรเดียว

แนะนำอสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการ แนะนำอสมการเชิงเส้นตัวแปรเดียว ซึ่งอสมการ เป็นประโยคที่แสดงถึงการไม่เท่ากัน โดยมีวิธีการหาคำตอบคล้ายๆกับสมการ น้องๆสามารถศึกษาบทความเรื่องโจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว เพื่อศึกษาวิธีการแก้สมการและนำมาประยุกต์ใช้กับการแก้อสมการเพิ่มเติมได้ที่  ⇒⇒โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว⇐⇐ แนะนำอสมการเชิงเส้นตัวแปรเดียว        อสมการ (inequality) เป็นประโยคที่แสดงถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  <, >, ≤, ≥ หรือ ≠  แสดงความสัมพันธ์         อสมการเชิงเส้นตัวแปรเดียว

เรียนรู้การเขียนเชิงวิชาการ อย่างง่ายเพียง 4 ขั้นตอน

การเขียนเชิงวิชาการ อาจจะดูเป็นการเขียนที่ยากในความคิดของหลาย ๆ คน เพราะดันมีคำว่า วิชาการ อยู่ด้วยนั่นเอง แต่น้อง ๆ ทราบไหมคะว่าที่จริงแล้วการเขียนเชิงวิชาการนั้นไม่ได้ยุ่งยากและซับซ้อนเลย แถมยังมีวิธีขั้นตอนการเขียนที่ง่าย ๆ เพียงไม่กี่ขั้นตอนเท่านั้น ถ้าน้อง ๆ อยากรู้แล้วว่ามันจะง่ายขนาดนั้นจริงหรือ? เราไปหาคำตอบของเรื่องนี้พร้อมกันเลยค่ะ   การเขียนเชิงวิชาการ คืออะไร?   คือ องค์ความรู้เชิงวิชาการที่ได้จากการตกผลึกทางความคิดของผู้เขียนที่ต้องการถ่ายทอดหรือสื่อสารให้ผู้อื่นได้รับรู้ผ่านกระบวนการเรียบเรียง โดยอาศัยการศึกษาค้นคว้า สำรวจ

+ – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะพูดถึงขั้นตอนการหาคำตอบของการ + – × ÷ เศษส่วนและจำนวนคละระคน ซึ่งน้อง ๆ จะสามารถหาคำตอบ แสดงวิธีทำและหาคำตอบออกมาได้อย่างสมเหตุสมผล

พันธกิจของภาษา

พันธกิจของภาษา ความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์

ภาษาที่มนุษย์ใช้กันอยู่ทุกวันนี้ไม่เพียงแต่เป็นเครื่องมือสื่อสาร แต่ยังเป็นเครื่องมือสื่อความหมาย ความต้องการ และความคิดของคน บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่อง พันธกิจของภาษา พร้อมความสำคัญและอิทธิพลของภาษาที่มีต่อมนุษย์ จะเป็นอย่างไรบ้างนั้นเราไปดูพร้อม ๆ กันเลยค่ะ   พันธกิจของภาษา   พันธกิจของภาษาคืออะไร?   พันธกิจของภาษา หมายถึง ประโยชน์หรือความสำคัญของภาษา ซึ่งประกอบไปด้วยความสำคัญหลัก ๆ ดังนี้ 1. ภาษาช่วยธำรงสังคม

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1