ฟังก์ชันลอการิทึม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ y=a^{x} ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ x=a^{y} จัดรูปใหม่ ได้เป็น ฟังก์ชันลอการิทึม (อ่านว่าล็อก x ฐาน a)

 

บทนิยาม

logarithm คือฟังก์ชันที่อยู่ในรูป {(x, y) ∈ \mathbb{R}^+\times \mathbb{R} : ฟังก์ชันลอการิทึม} โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1

 

ตัวอย่าง 

x = 5^{y} จัดรูปเป็น ฟังก์ชันลอการิทึม อ่านว่า ล็อก x ฐาน 5

 

กราฟ

กรณี a > 1

ฟังก์ชันลอการิทึม

กรณี 0 < a < 1

ฟังก์ชันลอการิทึม

 

จากกราฟจะเห็นว่า

1.) เมื่อ a > 1 จะเป็นฟังก์ชันเพิ่ม

2.) เมื่อ 0 < a < 1 จะเป็นฟังก์ชันลด

3.) กราฟของทั้ง 2 กรณีจะไม่ตัดแกน y

4.) ค่า x จะเป็นบวกเสมอ แต่ค่า y เป็นได้ทั้งบวกและลบ

 

สมบัติ ฟังก์ชันลอการิทึม

ให้ a, M และ N เป็นจำนวนจริงบวกที่ a ≠ 1 และ k เป็นจำนวนจริง จะได้ว่า

1.) ฟังก์ชันลอการิทึม

(ล็อกผลคูณเท่ากับผลบวกของล็อก)

2.) ฟังก์ชันลอการิทึม

(ล็อกผลหารเท่ากับผลต่างของล็อก)

3.) ฟังก์ชันลอการิทึม

เช่น   log_{2}x^3=3log_{2}x

4.) log_{a}a=1

5.) ฟังก์ชันลอการิทึม

(ล็อก 1 เท่ากับ 0)

6.) ฟังก์ชันลอการิทึม  เมื่อ k ≠ 0

เช่น  log_{2^5}x=\frac{1}{5}log_{2}x

7.) log_{a}b=\frac{1}{log_{b}a}  เมื่อ b >0 และ b ≠ 1

เช่น  ฟังก์ชันลอการิทึม

8.) ฟังก์ชันลอการิทึม  เมื่อ N ≠ 1

เช่น   ฟังก์ชันลอการิทึม   (เลขฐานไม่จำเป็นต้องเป็นเลข 2 เป็นเลขอะไรก็ได้ที่มากกว่า 0 และไม่เท่ากับ 1 )

การหาค่าลอการึทึม

ลอการิทึมที่ใช้มากและค่อนข้างนิยมใช้ในการคำนวณ คือ ลอการิทึมสามัญ (common logarithm) ซึ่งก็คือลอการิทึมที่มีเลขฐานสิบ และโดยทั่วไปเราจะเขียนล็อกโดยไม่มีฐานกำกับ

เช่น log_{10}x= log (x)

จากสมบัติข้อที่ 3 และ 4 จะได้ว่า

log10 = 1

log100=log10^{2}=2log10=2(1)=2

log0.01=log\frac{1}{100}=log10^{-2}=-2log(10)=-2

ดังนั้น จะได้ว่า log10^n=nlog10=n  เมื่อ n เป็นจำนวนเต็มใดๆ

ดังนั้น ถ้า N เป็นจำนวนเต็มบวกใดๆ เราสามารถเขียนอยู่ในรูป N_0\times 10^n ได้เสมอ โดยที่ 0 ≤ N < 10

เช่น 3,400=3.4\times10^3 , 0.0029 = 2.9 \times 10^{-3}

 

ทีนี้เรามาพิจารณา

N=N_0\times 10^n เมื่อ 0 ≤ N < 10

จะได้ว่า

ฟังก์ชันลอการิทึม

 

เราจะเรียก logN_0  ว่า แมนทิสซาของ logN

และเรียก n ว่า แคแรกเทอริสติกของ  logN

 

บทนิยาม

  1. ถ้า log N = A จะเรียก N ว่า แอนติลอการิทึมของ log N
  2. ถ้า log N = A จะได้ว่า N = antilog A

 

ตัวอย่าง

ให้หาค่าแคแรกเทอริสติกของ log 56.2

ฟังก์ชันลอการิทึม

 

ลอการิทึมที่นิยมใช้และมีประโยชน์มากเมื่อเรียนคณิตศาสตร์ขั้นที่สูงขึ้น คือ ลอการิทึมฐาน e โดยที่ e คือสัญลักษณ์ค่าคงที่ ซึ่ง e ≈ 2.7182818 ซึ่งล็อกฐาน e เราจะเรียกอีกอย่างว่า ลอการิทึมธรรมชาติ มักจะเขียนอยู่ในรูป ln x (อ่านว่าล็อก x ฐาน e)

การเปลี่ยนฐานของลอการิทึม

ตัวอย่างการเปลี่ยนฐานของลอการิทึม

กำหนดให้ log_65=0.8982 จงหาค่า log_{36}5

 

น้องๆสามารถเข้าไปอ่านบทความ ฟังก์ชันเอกซ์โพเนนเชียล เพื่อจะได้เข้าใจกับฟังก์ชันลอการิทึมง่ายขึ้น

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ศึกษาตัวบทโคลนติดล้อ ตอน ความนิยมเป็นเสมียน

โคลนติดล้อ เป็นบทความแสดงความคิดเห็นของพระบาทสมเด็จพระมงกุฎมีเนื้อหาเกี่ยวกับการเมือง การปลุกใจคนไทยให้รักชาติ และมีทั้งฉบับภาษาไทยและฉบับแปลเป็นภาษาอังกฤษ แค่นี้ก็น่าสนใจแล้วใช่ไหมคะ แต่ความดีเด่นของหนังสือเล่มนี้ยังมีอีกมาก บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ตัวบทที่สำคัญและคุณค่าของบทความที่ 4 ในเรื่องโคลนติดล้อตอน ความนิยมเป็นเสมียน พร้อม ๆ กันเลยค่ะ   บทเด่นใน โคลนติดล้อ ตอน ความนิยมเป็นเสมียน   บทนี้พูดถึงความนิยมในการเป็นเสมียนของหนุ่มสาวในยุคนั้นที่สนใจงานเสมียนมากกว่าการกลับไปช่วยทำการเกษตรที่บ้านเกิดเพราะเห็นว่าเสียเวลา คิดว่าตัวเองเป็นผู้ได้รับการศึกษาสูง จึงไม่สมควรที่จะไปทำงานที่คนไม่รู้หนังสือก็ทำได้  

สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล)

บทความนี้ได้รวบรวมความรู้เรื่อง ค่ากลางของข้อมูลและการกระจายของข้อมูล ซึ่งค่ากลางของข้อมูลจะประกอบด้วย ค่าเฉลี่ยเลขคณิต มัธยฐาน และฐานนิยม ส่วนการวัดการกระจายของข้อมูลจะศึกษาในเรื่องการหาส่วนเบี่ยงเบนมาตรฐาน ซึ่งน้องๆสามารถทบทวน การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ได้ที่  ⇒⇒  การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ ⇐⇐ หมายเหตุ ค่าเฉลี่ยในทางคณิตศาสตร์มีหลายชนิด แต่ที่นิยมใช้คือค่าเฉลี่ยเลขคณิต การวัดค่ากลางของข้อมูล  เป็นการหาค่ากลางมาเป็นตัวแทนของข้อมูลแต่ละชุด ซึ่งมีวิธีการหาได้หลายวิธีที่นิยมกัน ได้แก่ ค่าเฉลี่ยเลขคณิต มัธยฐาน ฐานนิยม ค่าเฉลี่ยเลขคณิต (Arithmetic

มารยาทในการพูด

มารยาทในการพูดที่ดีมีอะไรบ้างที่เราควรรู้

บทนำ   สวัสดีน้อง ๆ ทุกคน กลับเข้ามาสู่เนื้อหาสาระดี ๆ อีกครั้ง โดยวันนี้จะเป็นเนื้อหาที่เกี่ยวกับมารยาทในการพูด และจะต่อจากเนื้อหาเมื่อครั้งที่แล้วอย่างเรื่องมารยาทในการฟัง ซึ่งถือเป็นบทเรียนที่มีประโยชน์มาก ๆ เมื่อเราต้องไปพูดต่อหน้าที่สาธารณะ หรือพูดคุยสนทนากับเพื่อน ๆ คุณครู พ่อแม่ของเรา เพื่อให้การสื่อสารมีประสิทธิภาพ เราก็ควรเรียนรู้มารยาทที่ดีในการพูดไปด้วย ถ้าน้อง ๆ ทุกคนพร้อมแล้วมาดูกันว่าวันนี้จะมีเนื้อหาอะไรมาฝากกันบ้าง     การพูด

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์

การใช้คำคุณศัพท์และการเรียงคำคุณศัพท์ คำคุณศัพท์ (Adjective) คืออะไร? ก่อนเราจะเริ่มเข้าเนื้อหา ทางผู้เขียนก็อยากจะพูดถึงความหมายและความสำคัญของคำคุณศัพท์ (Adjective) กันก่อน คำคุณศัพท์ (Adjectives) มักจะุถูกใช้ในการอธิบายลักษณะรูปร่างทางกายภาพของทั้งสิ่งของและสิ่งมีชีวิตที่รวมถึงตัวของมนุษย์เอง โดยที่เราจะมาเรียนกันวันนี้คือการที่บางครั้ง คำคุณศัพท์ (Adjective) นั้นจะมีลักษณะที่ถูกใช้อธิบายลักษณะทางกายภาพที่มากกว่าหนึ่งอย่าง ในภาษาไทยของเรา ก็มีการเรียกคำคุณศัพท์ หรือที่เรียกว่า order of adjective ด้วยเหมือนกัน จากศึกษาและพูดคุยกับนักศึกษาศาสตร์ พบว่า การใช้ภาษาไทยในปัจจุบันไม่ได้มีการกำหนดการเรียงลำดับคำคุณศัพท์แบบภาษาอังกฤษที่ชัดเจน

ม.3 สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 3 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

การใช้ไวยากรณ์ Past Simple ในการตั้งคำถาม

เกริ่นนำ เกริ่นใจ อดีต ปัจจุบันและอนาคต ทั้งหมดนี้ล้วนแล้วได้รับความสำคัญในหลักไวยากรณ์ของภาษาอังกฤษ เอาเข้าจริง ภาษาไทยของเราเองก็มีอะไรในลักษณะนี้เหมือนกันนะ แต่จะไม่เด่นชัดในรูปประโยคจนรู้สึกว่าซับซ้อนเหมือนภาษาอังกฤษที่เรากำลังเรียน ตัวอย่างเช่น เมื่อวานไปไหนมา….หรือ ฉันไป…มา ในขณะที่ภาษาอังกฤษจะต้องมีการปรับโครงสร้างให้เป็นรูปอดีตด้วยการเปลี่ยนคำกริยาเป็นช่องที่ 2 ตัวอย่างเช่น Where “did” you go yesterday? หรือ I “went to…” เป็นต้น อย่างไรก็ดี

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1