ฟังก์ชันลอการิทึม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันลอการิทึม

ฟังก์ชันลอการิทึม คือฟังก์ชันผกผันของฟังก์ชันเอกซ์โพเนนเชียล จากที่ฟังก์ชันเอกซ์โพเนนเชียลคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์ที่ส่งจากจำนวนจริงไปยังจำนวนจริงบวก โดยที่ y=a^{x} ดังนั้นฟังก์ชันดังกล่าวซึ่งเป็นฟังก์ชันผกผันของเอกซ์โพเนนเชียล ก็คือ คู่อันดับ (y, x)  หรืออาจจะบอกได้อีกแบบคือ คู่อันดับ (x, y) ซึ่งเป็นความสัมพันธ์จากจำนวนจริงบวกไปยังจำนวนจริง โดยที่ x=a^{y} จัดรูปใหม่ ได้เป็น ฟังก์ชันลอการิทึม (อ่านว่าล็อก x ฐาน a)

 

บทนิยาม

logarithm คือฟังก์ชันที่อยู่ในรูป {(x, y) ∈ \mathbb{R}^+\times \mathbb{R} : ฟังก์ชันลอการิทึม} โดยที่ a เป็นจำนวนจริงที่มากกว่า 0 และ a ≠ 1

 

ตัวอย่าง 

x = 5^{y} จัดรูปเป็น ฟังก์ชันลอการิทึม อ่านว่า ล็อก x ฐาน 5

 

กราฟ

กรณี a > 1

ฟังก์ชันลอการิทึม

กรณี 0 < a < 1

ฟังก์ชันลอการิทึม

 

จากกราฟจะเห็นว่า

1.) เมื่อ a > 1 จะเป็นฟังก์ชันเพิ่ม

2.) เมื่อ 0 < a < 1 จะเป็นฟังก์ชันลด

3.) กราฟของทั้ง 2 กรณีจะไม่ตัดแกน y

4.) ค่า x จะเป็นบวกเสมอ แต่ค่า y เป็นได้ทั้งบวกและลบ

 

สมบัติ ฟังก์ชันลอการิทึม

ให้ a, M และ N เป็นจำนวนจริงบวกที่ a ≠ 1 และ k เป็นจำนวนจริง จะได้ว่า

1.) ฟังก์ชันลอการิทึม

(ล็อกผลคูณเท่ากับผลบวกของล็อก)

2.) ฟังก์ชันลอการิทึม

(ล็อกผลหารเท่ากับผลต่างของล็อก)

3.) ฟังก์ชันลอการิทึม

เช่น   log_{2}x^3=3log_{2}x

4.) log_{a}a=1

5.) ฟังก์ชันลอการิทึม

(ล็อก 1 เท่ากับ 0)

6.) ฟังก์ชันลอการิทึม  เมื่อ k ≠ 0

เช่น  log_{2^5}x=\frac{1}{5}log_{2}x

7.) log_{a}b=\frac{1}{log_{b}a}  เมื่อ b >0 และ b ≠ 1

เช่น  ฟังก์ชันลอการิทึม

8.) ฟังก์ชันลอการิทึม  เมื่อ N ≠ 1

เช่น   ฟังก์ชันลอการิทึม   (เลขฐานไม่จำเป็นต้องเป็นเลข 2 เป็นเลขอะไรก็ได้ที่มากกว่า 0 และไม่เท่ากับ 1 )

การหาค่าลอการึทึม

ลอการิทึมที่ใช้มากและค่อนข้างนิยมใช้ในการคำนวณ คือ ลอการิทึมสามัญ (common logarithm) ซึ่งก็คือลอการิทึมที่มีเลขฐานสิบ และโดยทั่วไปเราจะเขียนล็อกโดยไม่มีฐานกำกับ

เช่น log_{10}x= log (x)

จากสมบัติข้อที่ 3 และ 4 จะได้ว่า

log10 = 1

log100=log10^{2}=2log10=2(1)=2

log0.01=log\frac{1}{100}=log10^{-2}=-2log(10)=-2

ดังนั้น จะได้ว่า log10^n=nlog10=n  เมื่อ n เป็นจำนวนเต็มใดๆ

ดังนั้น ถ้า N เป็นจำนวนเต็มบวกใดๆ เราสามารถเขียนอยู่ในรูป N_0\times 10^n ได้เสมอ โดยที่ 0 ≤ N < 10

เช่น 3,400=3.4\times10^3 , 0.0029 = 2.9 \times 10^{-3}

 

ทีนี้เรามาพิจารณา

N=N_0\times 10^n เมื่อ 0 ≤ N < 10

จะได้ว่า

ฟังก์ชันลอการิทึม

 

เราจะเรียก logN_0  ว่า แมนทิสซาของ logN

และเรียก n ว่า แคแรกเทอริสติกของ  logN

 

บทนิยาม

  1. ถ้า log N = A จะเรียก N ว่า แอนติลอการิทึมของ log N
  2. ถ้า log N = A จะได้ว่า N = antilog A

 

ตัวอย่าง

ให้หาค่าแคแรกเทอริสติกของ log 56.2

ฟังก์ชันลอการิทึม

 

ลอการิทึมที่นิยมใช้และมีประโยชน์มากเมื่อเรียนคณิตศาสตร์ขั้นที่สูงขึ้น คือ ลอการิทึมฐาน e โดยที่ e คือสัญลักษณ์ค่าคงที่ ซึ่ง e ≈ 2.7182818 ซึ่งล็อกฐาน e เราจะเรียกอีกอย่างว่า ลอการิทึมธรรมชาติ มักจะเขียนอยู่ในรูป ln x (อ่านว่าล็อก x ฐาน e)

การเปลี่ยนฐานของลอการิทึม

ตัวอย่างการเปลี่ยนฐานของลอการิทึม

กำหนดให้ log_65=0.8982 จงหาค่า log_{36}5

 

น้องๆสามารถเข้าไปอ่านบทความ ฟังก์ชันเอกซ์โพเนนเชียล เพื่อจะได้เข้าใจกับฟังก์ชันลอการิทึมง่ายขึ้น

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ทศนิยมกับการวัด

ความสัมพันธ์ของทศนิยมกับการวัด

บทความนี้จะกล่าวถึงความสัมพันธ์ของทศนิยมกับการวัด ที่จะทำให้น้อง ๆสามารถนำไปประยุกต์ใช้กับสถาณการณ์ที่ต้องเจอในชีวิตประจำวัน จะทำให้เข้าใจหลักการและสามารถบอกค่าของการวัดที่เป็นทศนิยมได้ถูกต้อง

NokAcademy_ ม.5 M6 Gerund

Gerund

สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนเรื่อง “Gerund” และฝึกวิเคราะห์โจทย์ข้อสอบเข้ามหาวิทยาลัยกันจร้า พร้อมแล้วก็ไปลุยกันโลดเด้อ   ความหมายของ Gerund อธิบายแบบง่ายๆ เลยว่า Gerund หรือ Ing-form ในบริติชอิงลิช ที่จริงแล้ว มันก็คือ คำกริยาเติม ing (V-ing) แล้วหน้าที่เป็นคำนาม ในภาษาไทยถูกนำมาใช้ในไวยากรณ์เรียกว่า กริยานาม นั่นเองจร้า  

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

โจทย์ปัญหาการวัด ม.2

ในบทความนี้เราจะได้เรียนรู้ตัวอย่างโจทย์การแปลงหน่วย และหาพื้นที่ของรูปเรขาคณิตต่างๆ พร้อมทั้งเรียนรู้การใช้สูตรที่เร็วขึ้น

อสมการค่าสัมบูรณ์

จากบทความที่ผ่านมา น้องๆได้ศึกษาเรื่องค่าสัมบูรณ์และการแก้อสมการไปแล้ว บทความนี้จะเป็นการเอาเนื้อหาของอสมการและค่าสัมบูรณ์มาปรับใช้ นั่นก็คือ เราจะแก้อสมการของค่าสัมบูรณ์นั่นเองค่ะ เรื่องอสมการค่าสัมบูรณ์น้องๆจะได้เจอในข้อสอบ O-Net แต่น้องๆไม่ต้องกังวลค่ะ ถ้าน้องๆเข้าใจหลักการและสมบัติของค่าสัมบูรณ์และอสมการน้องๆจะสามารถทำข้อสอบได้แน่นอน

Direct Object

Direct and Indirect Objects

สวัสดีน้องๆ ม. 5 ทุกคนนะครับ วันนี้เราจะมาทำความเข้าใจเรื่อง Direct และ Indirect Objects กันครับว่าคืออะไร ถ้าพร้อมแล้วไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1