การให้เหตุผลแบบอุปนัย

สมบัติการคูณจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน

ตัวอย่างเช่น

เหตุ

  1. เมื่อวานแป้งตั้งใจเรียน
  2. วันนี้แป้งตั้วใจเรียน

ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน

การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

ตัวอย่าง การให้เหตุผลแบบอุปนัย

1.) หาค่า n โดยใช้การให้เหตุผลแบบอุปนัย

1.1) 1, 3, 5, 7, 9, n

วิธีคิด จากโจทย์จะเห็นว่า ตัวเลขแต่ละตัวเพิ่มขึ้นทีละ 2  เราก็พอจะรู้แล้วว่าตัวเลขที่ถัดจาก 9 คือ 9 + 2 = 11

ดังนั้น n = 11

1.2)

(9 × 9) + 7         = 88
(98 × 9) + 6      = 888
(987 × 9) + 5    = 8,888
(n × 9) + 4        = 88,888

วิธีคิด จากโจทย์ลองสังเกต ตัวเลขที่คูณกับ 9 จะเห็นว่าค่อยๆเพิ่มตัวเลข โดยตัวเลขที่เพิ่มขึ้นมานั้นมีค่าน้อยกว่าตัวข้างหน้าอยู่ 1 เช่น  9 เพิ่ม 8 ขึ้นมาเป็น 98 และเพิ่ม 7 ขึ้นมา 987  ดังนั้น ตัวเลขต่อไปก็ควรจะเป็น 9876 ซึ่งเมื่อลองคำนวณ (9876 × 9) + 4 เท่ากับ 88,888

ดังนั้น  n = 9,876

 

2.) พิจารณารูปแบบที่กำหนดให้ และหารูปแบบลำดับถัดไป

11 × 11 = 121

111 × 111 = 12321

1111 × 1111 = 1234321

___×____=__________

แนวคำตอบ ลำดับถัดไปคือ 11111 × 11111 = 123454321

 

สรุป

  1. การให้เหตุผลแบบอุปนัย คือ การสรุปแบบย่อย ไปหา ใหญ่
  2. อาจจะเป็นจริงหรือเท็จก็ได้ เนื่องจากเป็นการสรุปจากเล็กไปหาใหญ่ ทำให้ไม่มีขอบเขตที่ชัดเจน
  3. ผลสรุปของเรา จะน่าเชื่อถือหรือไม่ ขึ้นอยู่กับจำนวนประสบการณ์ ซึ่งไม่ควรน้อยเกินไป เพราะอาจจะทำให้สรุปผิดพลาดได้

วีดีโอเพิ่มเติม

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สัญลักษณ์พื้นฐานเกี่ยวกับเซต

สัญลักษณ์ของเซตจะช่วยให้เราไม่ต้องเขียนประโยคยาวซ้ำๆ และใช้ได้เกือบทุกบทของวิชาคณิตศาสตร์ ช่วยให้ประหยัดเวลาและเนื้อที่บนกระดาษมากๆ

สับเซตและเพาเวอร์เซต

บทความนี้จะเป็นเนื้อหาเกี่ยวกับสับเซต เพาเวอร์เซต ซึ่งเป็นเนื้อหาที่สำคัญ หลังจากที่น้องๆอ่านบทความนี้จบแล้ว น้องๆจะสามารถบอกได้ว่า เซตใดเป็นสับเซตของเซตใดและสามารถบอกได้ว่าสมาชิกของเพาเวอร์เซตมีอะไรบ้าง

comparison of adjectives

Comparison of Adjectives

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับเรื่องของ Comparison of Adjectives ซึ่งจะคืออะไรและเอาไปใช้อะไรได้บ้าง เราลองไปดูกันเลยครับ

หลักการเบื้องต้นของอัตราส่วน

หลักการเบื้องต้นของอัตราส่วน

“อัตราส่วน คือ ปริมาณ อย่างหนึ่งที่แสดงถึง จำนวน หรือ ขนาด ตามสัดส่วนเมื่อเปรียบเทียบกับอีก ปริมาณ หนึ่งที่เกี่ยวข้องกัน ที่อาจมีได้ตั้งแต่สองปริมาณขึ้นไป”

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง

ระยะห่างของเส้นตรง ระยะห่างของเส้นตรง มีทั้งระยะห่างระหว่างจุดกับเส้นตรง และระหว่างเส้นตรงสองเส้นที่ขนานกัน ซึ่งจากบทความเรื่องเส้นตรง น้องๆพอจะทราบแล้วว่าเส้นตรงสองเส้นที่ขนานกันความชันจะเท่ากัน ในบทความนี้น้องๆจะทราบวิธีการหาระยะห่างของเส้นตรงที่ขนานกันด้วยซึ่งสามารถประยุกต์ใช้ในการหาสมการเส้นตรงได้ด้วย ระยะห่างระหว่างเส้นตรงกับจุด จากรูปจะได้ว่า  โดยที่ A, B และ C เป็นค่าคงที่ และ A, B ไม่เป็นศูนย์พร้อมกัน ตัวอย่าง1  หาระยะห่างระหว่างจุด (1, 5) และเส้นตรง 2x

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1