การบวก ลบ คูณ หารจำนวนเต็ม

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้

การบวกจำนวนเต็ม

การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้

|-12|=   12

|4|=   4

เนื่องจาก   ค่าสัมบูรณ์ของจำนวนเต็มบวก และ จำนวนเต็มลบ ถอดค่าสมบูรณ์ได้ จำนวนเต็มบวก เสมอ               

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก          

ตัวอย่างที่ 1   จงหาผลบวกของจำนวนต่อไปนี้

1)   3 + 4

วิธีทำ      3 + 4 = | 3 | + | 4 |

      = 3 + 4

      = 7

ตอบ   7

2)   3 + 9

วิธีทำ      3 + 9  = | 3 | + | 9 |

       = 3 + 9

       = 12

ตอบ  12

        การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ทำได้โดยการนำค่าสัมบูรณ์มาบวกกัน  ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวก

การบวกจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 2   จงหาผลบวกของจำนวนต่อไปนี้  

1)   (-3) + (-4)  

วิธีทำ (-3) + (-4) = -7

ตอบ  -7

2)  (-4) + (-1)

วิธีทำ  (-4) + (-1)  =  -5

ตอบ   -5

          การบวกจำนวนเต็มลบกับจำนวนเต็มลบ  ผลลัพธ์ที่ได้เป็นจำนวนเต็มลบ

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มลบ 

ตัวอย่างที่ 3  จงหาผลบวกของจำนวนต่อไปนี้

1)   6 + (-4)  

วิธีทำ   6 + (-4) = 2

ตอบ   2

2)   2 + (-6)

วิธีทำ  2 + (-6) = -4

ตอบ   -4

3)   3 + (-2)

วิธีทำ  3 + (-2) = 1

ตอบ   1

4)   7 + (-5)

วิธีทำ  7 + (-5) = 2

ตอบ   2

การบวกจำนวนเต็มลบด้วยจำนวนเต็มบวก 

ตัวอย่างที่ 4  จงหาผลบวกของจำนวนต่อไปนี้

1)   (-2) + 5

วิธีทำ   (-2) + 5 = 3

ตอบ   3

2)  (-5) + 3

วิธีทำ   (-5) + 3 = -2

ตอบ   -2

3)  (-7) + 5

วิธีทำ   (-7) + 5 = -2

ตอบ   -2

4)  (-4) + 10

วิธีทำ   (-4) + 10 = 6

ตอบ   6

          การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ทำได้โดยการนำจำนวนที่มีค่าสัมบูรณ์มากกว่าเป็นตัวตั้ง แล้วลบด้วยจำนวนที่มีค่าสัมบูรณ์น้อยกว่า ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า

การลบจำนวนเต็ม

การลบจำนวนเต็มคือการบวกด้วยจำนวนตรงข้าม เช่น จำนวนตรงข้ามของ 2 คือ -2 , จำนวนตรงข้ามของ 8 คือ -8

ตัวอย่างที่ 5  จงหาผลลบของจำนวนต่อไปนี้

1)   7 – 12

วิธีทำ   7 – 12  =  7 + (-12)

                      =  -5

ตอบ       -5

2)  (-8) – 2

วิธีทำ    (-8) – 2  =  (-8) + (-2)

                         =  -10    

ตอบ       -10

3)   3 – (-5)

วิธีทำ    3 – (-5)       =  3 + 5

                               =  8

ตอบ       8

4)   (-3) – (-8)

วิธีทำ      (-3) – (-8)   =   (-3) + 8

                                =   5    

ตอบ       5

5)   8 – 5

วิธีทำ    8 – 5  =  8 + (-5)

                     =     3

ตอบ       3

6)   (-9) – 4

วิธีทำ        (-9) – 4   =  (-9) + (-4)

                              =  -13    

ตอบ       -13

7)   6 – (-4)

วิธีทำ    6 – (-4)       =  6 + 4

                               =  10

ตอบ       10

8)   (-8) – (-2)

วิธีทำ        (-8) – (-2)   =   (-8) + 2

                                  =   -6    

ตอบ       -6

9)   (-8) – 4

วิธีทำ   (-8) – 4  =  (-8) + (-4)

                         =  -12

ตอบ      -12

10)   (-9) – (-3)

วิธีทำ   (-9) – (-3)  =  (-9) + 3

                             =  -6

ตอบ      -6

การคูณจำนวนเต็ม

การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก

ตัวอย่างที่ 6  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   3 x 2  

วิธีทำ        3 x 2  =   | 3 | x | 2 |

                         =   3 x 2

                         =   6

ตอบ     6

2)   4 x 7  

วิธีทำ        4 x 7  =   | 4 | x | 7 |

                         =   4 x 7

                         =   28

ตอบ     28

3)   4 x 10

วิธีทำ       4 x 10  =   | 4 | x | 10 |

                         =   4 x 10

                         =   40

ตอบ     40

4)   6 x 9  

วิธีทำ  6 x 9  =   | 6 | x | 9 |

                         =   6 x 9

                         =   54

ตอบ     54

       การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (บวกคูณบวกได้บวก)

การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 7  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   (-2)(-5) = 0

วิธีทำ   (-2)(-5)  =   | -2 | x | -5 |

                         =   2 x 5

                         =   10

ตอบ     10

(2)  (-7)(-3) = 0

วิธีทำ       (-7)(-3)   =  | -7 | x | -3 |

                              =   7 x 3

                              =   21

ตอบ     21

       การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (ลบคูณลบได้บวก)

ตัวอย่างที่ 8  จงหาผลลัพธ์ของจำนวนต่อไปนี้

1)   [(-2)(4)](-9) 

วิธีทำ   [(-2)(4)](-9)  =  (-8) (-9)

                                =   72

ตอบ     72

2)    [ 5(-7)] 6 

วิธีทำ     [ 5(-7)]6   =  (-35) 6

                              =    -210

ตอบ     -210

3)   [ 2(-5)](-4) 

วิธีทำ     [ 2(-5)](-4)  =   (-10) (-4)

                                 =   40

ตอบ     40

4)   9[ (-5)(-4)]  

วิธีทำ   9[(-5)(-4)]   =  9 x 20

                               =   180

ตอบ     180

การหารจำนวนเต็ม

ตัวอย่างที่ 9  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   36 ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ 36

เนื่องจาก 6 x 6 = 36 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ 36 ÷ 6 = 6

2)   (-54) ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ -54

เนื่องจาก (-9) x 6 = -54 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ (-54) ÷ (-9) = 6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารเป็นจำนวนเต็มบวกทั้งคู่ หรือจำนวนเต็มลบทั้งคู่ จะได้คำตอบเป็นจำนวนเต็มบวก (ลบหารด้วยลบ หรือ บวกหารด้วยบวก ได้บวกเสมอ)

ตัวอย่างที่ 10  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   72 ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ 72

เนื่องจาก (-9) x (-8) = 72 

ดังนั้นจำนวนที่ต้องการคือ -8

นั่นคือ 72 ÷ (-9) = -8

2)   (-36) ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ -36

เนื่องจาก 6 x (-6) = -36 

ดังนั้นจำนวนที่ต้องการคือ -6

นั่นคือ (-36) ÷ 6 = -6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารตัวใดตัวหนึ่งเป็นจำนวนเต็มลบ โดยที่อีกตัวหนึ่งเป็นจำนวนเต็มบวก จะได้คำตอบเป็นจำนวนเต็มลบ (ลบหารด้วยบวก หรือ บวกหารด้วยลบ ได้ลบเสมอ)

ตัวอย่างที่ 11  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   14 ÷ (-7) = -2    (หาจำนวนที่คูณกับ -7 แล้วได้ 14 คือ -2)

2)   12 ÷ 3 = 4    (หาจำนวนที่คูณกับ 3 แล้วได้ 12 คือ 4)

3)   (-21) ÷ 3 = -7    (หาจำนวนที่คูณกับ 3 แล้วได้ -21 คือ -7)

4)   (-35) ÷ (-5) = 7    (หาจำนวนที่คูณกับ -5 แล้วได้ -35 คือ 7)

5)   40 ÷ 8 = 5    (หาจำนวนที่คูณกับ 8 แล้วได้ 40 คือ 5)

สรุป
  • การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ได้เป็นจำนวนเต็มบวก
  • การบวกจำนวนเต็มลบกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มลบ
  • การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า    
  • การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  ได้เป็นจำนวนเต็มบวก (บวกคูณบวกได้บวก)
  • การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวก (ลบคูณลบได้บวก)
  •  การหารจำนวนเต็ม ลบหารด้วยลบ ได้บวก หรือ บวกหารด้วยบวก ได้บวก
  • การหารจำนวนเต็ม ลบหารด้วยบวก ได้ลบ หรือ บวกหารด้วยลบ ได้ลบ

คลิปวิดีโอ การบวก ลบ คูณ หารจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี การบวก ลบ คูณ หารจำนวนเต็ม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

ศัพท์บัญญัติ

ศัพท์บัญญัติ เรียนรู้การยืมคำและบัญญัติขึ้นใหม่

น้อง ๆ หลายคนอาจจะไม่ค่อยคุ้นเคยกับคำว่า ศัพท์บัญญัติ สักเท่าไหร่ บทเรียนวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับศัพท์บัญญัติที่ว่านั่นกันค่ะว่าคืออะไร มีที่มาและมีหลักเกณฑ์ในการสร้างอย่างไรบ้าง ถ้าน้อง ๆ พร้อมที่จะเรียนรู้กันแล้ว ก็ไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   การบัญญัติศัพท์คืออะไร     การบัญญัติศัพท์ คือการกำหนดคำศัพท์จากภาษาต่างประเทศขึ้นมาใหม่ในภาษาไทย เพื่อใช้สื่อความหมายบางอย่างโดยเฉพาะในศาสตร์แขนงใดแขนงหนึ่ง หรือเพื่อใช้ในการเขียนเอกสารของงานราชการ ตามเจตนาของผู้บัญญัติ ซึ่งคำศัพท์ที่เกิดจากวิธีการเช่นนี้จะเรียกว่า ศัพท์บัญญัติ โดยทั่วแล้วศัพท์บัญญัติมักจะมาจากภาษาอังกฤษ

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

ค่าสัมบูรณ์

ค่าสัมบูรณ์

ค่าสัมบูรณ์ ค่าสัมบูรณ์  หรือ Absolute คือค่าของระยะทางจากศูนย์ไปยังจุดที่เราสนใจ เช่น ระยะทางจากจุด 0 ถึง -5 มีระยะห่างเท่ากับ 5 เนื่องจากค่าสัมบูรณ์เอาไว้บอกระยะห่าง ดังนั้นค่าสัมบูรณ์จะมีค่าเป็นบวกหรือศูนย์เท่านั้น ไม่สามารถเป็นลบได้ นิยามของค่าสัมบูรณ์ ให้ a เป็นจำนวนจริงใดๆ จะได้ว่า และ   น้องๆอาจจะงงๆใช่ไหมคะ ลองมาดูตัวอย่างสักนิดนึงดีกว่าค่ะ เช่น เพราะ

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1