การแยกตัวประกอบ

การแยกตัวประกอบ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การแยกตัวประกอบ

การแยกตัวประกอบ ของจำนวนนับใด หมายถึง การเขียนจำนวนนับนั้นในรูปการคูณของ ตัวประกอบเฉพาะ  ซึ่งในบทความนี้ได้นำเสนอวิธีการ รวมถึง โจทย์การแยกตัวประกอบ ไว้มากมาย น้องๆสามารถศึกษาเรียนรู้ได้ดวยตนเองโดยที่มีวิธีการแยกตัวประกอบ 2 วิธี ดังนี้

  1. การแยกตัวประกอบ  โดยการคูณ 
  2. การแยกตัวประกอบ  โดยการหาร (หารสั้น)

        ก่อนอื่นน้องๆมาทบทวน ความหมายของตัวประกอบและจำนวนเฉพาะ กันก่อนนะคะ

จำนวนเฉพาะ  คือ  จำนวนนับที่มากกว่า  1  และมีตัวประกอบเพียง  2  ตัว  คือ  1  และตัวมันเอง

ตัวประกอบ ของจำนวนนับใด  ๆ  คือ จำนวนนับที่หารจำนวนนับนั้นได้ลงตัว  

แล้วน้องๆ ทราบหรือไม่ว่า ตัวประกอบเฉพาะ  คืออะไร   ถ้ายังไม่ทราบ แล้วรู้หรือไม่ว่าตัวประกอบทั้งหมดของ  28 มีจำนวนใดบ้าง

ตัวประกอบทั้งหมดของ  28 คือ 1, 2, 4, 7, 14, 28  จะเห็นได้ชัดว่า จำนวนเฉพาะจากตัวประกอบทั้งหมดของ  28  คือ 2 และ 7  เราเรียก  2 และ 7 ว่า ตัวประกอบเฉพาะ

ต่อไปมาดูตัวอย่าง ตัวประกอบ และ ตัวประกอบเฉพาะ กันนะคะ

ตัวอย่างที่ 1 จงหาตัวประกอบและตัวประกอบเฉพาะของจำนวนต่อไปนี้

  1.     10
  2.    36

วิธีทำ     1. ตัวประกอบของ  10  คือ  1, 2, 5, 10

ตัวประกอบเฉพาะของ  10  คือ  2, 5

2. ตัวประกอบของ 36 คือ  1, 2, 3, 4, 6, 9, 12, 18, 36

ตัวประกอบเฉพาะของ 36 คือ  2, 3

จากตัวอย่างที่ผ่านมา สามารถสรุปความหมายของตัวประกอบเฉพาะ ได้ว่า ตัวประกอบเฉพาะ คือ ตัวประกอบที่เป็นจำนวนเฉพาะของจำนวนนับใด ๆ        

เมื่อทำความรู้จักกับ ตัวประกอบเฉพาะ แล้ว ต่อไปมาดูวิธีการแยกตัวประกอบทั้ง 2 วิธี กันนะคะ เริ่มที่วิธีแรกกันเลยค่ะ 

วิธีที่ 1 การแยกตัวประกอบ โดยการคูณ 

         วิธีการแยกตัวประกอบโดยการคูณ หรือการเขียนแผนภาพ  เริ่มโดยการแยกออกเป็นผลคูณทีละสองจำนวน  ในการแยกตัวประกอบ ของจำนวนนับที่มีตัวประกอบหลาย ๆ จำนวน  เราอาจหาตัวประกอบทีละสองตัวหลาย ๆ ขั้น จนขั้นสุดท้ายได้ตัวประกอบทุกตัวเป็นตัวประกอบเฉพาะ

ตัวอย่างที่ 2  จงแยกตัวประกอบของ  50  และ  72

วิธีทำ             50 = 2 x 25

= 2 x 5 x 5  

                            72 = 2 x 36

= 2 x 2 x 18

= 2 x 2 x 2 x 9

= 2 x 2 x 2 x 3 x 3   

ดังนั้น  50 = 2 x 5 x 5  และ 72 = 2 x 2 x 2 x 3 x 3 

นอกจากการแยกตัวประกอบโดยการคูณ ยังมีอีกวิธีที่หนึ่งทำคล้าย ๆ กันคือ การแยกตัวประกอบการเขียนแผนภาพ ดังตัวอย่าง ต่อไปนี้

ตัวอย่างที่ 3 จงแยกตัวประกอบของ   60 

การแยกตัวประกอบ 2 ดังนั้น  60 = 2 x 2 x 3 x 5 

ตัวอย่างที่ 4 จงแยกตัวประกอบของ   160   

การแยกตัวประกอบ 3

ดังนั้น  160 = 2 x 2 x 2 x 2 x 2 x 5 

วิธีการแยกตัวประกอบ โดยการเขียนแผนภาพ เป็นวิธีที่ทำได้ง่ายและรวดเร็ว แต่ถ้าตัวเลขเยอะๆ อาจจะทำให้น้องๆคิดตัวเลขในการแยกตัวประกอบได้ช้า ลำดับต่อไปจึงขอนำเสนอวิธี การแยกตัวประกอบ โดยการหารสั้น

วิธีที่ 2 การแยกตัวประกอบ โดยการหาร (หารสั้น)

         วิธีตั้งหาร โดยใช้จำนวนเฉพาะไปหารจำนวนนับที่เป็นตัวตั้งเรื่อย ๆ จนไม่สามารถหารได้ เมื่อนำตัวหารทุกตัวมาคูณกันจะมีค่าเท่ากับจำนวนนับที่กำหนดให้ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 5 จงแยกตัวประกอบของ 36

วิธีทำ           

2 ) 36             

2 ) 18 

3 )  9

      3                               

ดังนั้น  36 = 2 x 2 x 3 x 3 

ตัวอย่างที่ 6 จงแยกตัวประกอบของ  462

วิธีทำ                         

2 ) 462              

3 ) 231 

7 )  77

       11                               

ดังนั้น  462 = 2 x 3 x 5 x 7 x 11 

ตัวอย่างที่ 7 จงแยกตัวประกอบของ  110

วิธีทำ                         

2 ) 110              

5 )  55 

       11                               

ดังนั้น  110 = 2 x 5 x 11 

ตัวอย่างที่ 8 จงแยกตัวประกอบของ  80

วิธีทำ                         

2 ) 80              

2 ) 40 

2 ) 20

2 ) 10

       5                               

ดังนั้น  80 = 2 x 2 x 2 x 2 x 5 

เปรียบเทียบการแยกตัวประกอบ โดยการคูณและการเขียนแผนภาพ

           ตัวอย่าง การแยกตัวประกอบ ต่อไปนี้ จะแสดงให้เห็นความแตกต่างอย่างชัดเจน ระหว่างการแยกตัวประกอบโดยการหาร และการแยกตัวประกอบโดยการเขียนแผนภาพ ซึ่งได้รวบรวม โจทย์การแยกตัวประกอบ ไว้หลากหลายโจทย์ เมื่อน้องๆเจอโจทย์การแยกตัวประกอบ จะทำให้น้องๆเลือกวิธีการและทำออกมาได้อย่างถูกต้อง

ตัวอย่างที่ 9 จงแยกตัวประกอบของ  234

การแยกตัวประกอบ 6

ตัวอย่างที่ 10 จงแยกตัวประกอบของ  268

การแยกตัวประกอบ 5

ตัวอย่างที่ 11 จงแยกตัวประกอบของ  290

การแยกตัวประกอบ 4

ตั้งแต่ตัวอย่างที่ 9 ถึง ตัวอย่างที่ 11 น้องๆสังเกตหรือไม่คะ ไม่ว่าจะใช้วิธีการใดในการแยกตัวประกอบ ผลสุดท้ายแล้ว ในการแยกตัวประกอบคำตอบจะได้เท่ากันเสมอ

เมื่อน้องได้เรียนรู้เรื่อง การแยกตัวประกอบ ทั้ง 2 วิธี คือ วิธีการคูณ และ การหาร จำนวนที่นำมาแยกตัวประกอบจะต้องเป็น ตัวประกอบเฉพาะ ซึ่งจาก โจทย์การแยกตัวประกอบ  หลายๆข้อ จะเห็นได้ชัดว่า สามารถหาคำตอบได้ง่ายและรวดเร็ว เรื่องต่อไปที่น้องๆต้องเรียนรู้คือการหา  ตัวหารร่วมมาก (ห.ร.ม.) ซึ่งจะเป็นการฝึกน้องๆได้มีวิธีการหา ห.ร.ม. แต่ละข้อได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ การแยกตัวประกอบ

        คลิปวิดีโอนี้ได้รวบรวมวิธี การแยกตัวประกอบ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย โจทย์การแยกตัวประกอบ และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

M5 การใช้ Phrasal Verbs

การใช้ Phrasal Verbs

สวัสดีค่ะนักเรียนชั้นม.5 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง ” การใช้ Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด Phrasal Verbs คืออะไร   Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป

ม.1 There is_There are ทั้งประโยคบอกเล่า_ คำถาม_ปฏิเสธ

การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ

สวัสดีค่ะนักเรียนชั้น ม.1 ที่รักทุกคน วันนี้เราจะไปเรียนรู้ “การใช้ There is/There are ทั้งประโยคบอกเล่า/คำถาม/ปฏิเสธ” กันจ้า ถ้าพร้อมแล้วก็ไปลุยกันเลยเด้อ ตารางแสดงความแตกต่างของ  There is/There are และ  Have/Has นักเรียนลองสังเกตดูความแตกต่างของการใช้ There is/There are กับ Have/has จากตารางด้านล่าง ดูนะคะ

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

ข้อสอบO-Net เรื่องจำนวนจริง

ข้อสอบO-Net ข้อสอบO-Net ในบทความนี้จะคัดเฉพาะเรื่องจำนวนจริงมาให้น้องๆทุกคนได้ดูว่าที่ผ่านมาแต่ละปีข้อสอบเรื่องจำนวนจริงออกแนวไหนบ้าง โดยบทความนี้พี่ได้นำข้อสอบย้อนหลังของปี 49 ถึงปี 52 มาให้น้องๆได้ดูพร้อมเฉลยอย่างละเอียด เมื่อน้องๆได้ศึกษาโจทย์ทั้งหมดและลองฝึกทำด้วยตัวเองแล้ว น้องๆจะสามารถทำข้อสอบทั้งของในโรงเรียนและข้อสอบO-Net ได้แน่นอนค่ะ ข้อสอบO-Net เรื่องจำนวนจริง ปี 49   1.   มีค่าเท่ากับข้อในต่อไปนี้     60      

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สมบัติของการคูณเลขยกกำลัง  ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว  1)   am x an

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1