การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การวัดความยาวส่วนโค้ง

การวัดความยาวส่วนโค้ง ในบทความนี้จะเป็นการวัดความยาวของวงกลม 1 หน่วย

วงกลมหนึ่งหน่วย คือวงกลมที่มีจุดศูนย์กลางที่จุดกำเนิด และมีรัศมียาว 1 หน่วย

จากสูตรของเส้นรอบวง คือ 2\pir ดังนั้นวงกลมหนึ่งหน่วย จะมีเส้นรอบวงยาว 2\pi และครึ่งวงกลมยาว \pi

การวัดความยาวส่วนโค้ง

 

จุดปลายส่วนโค้ง

 

จากรูป จะได้ว่าจุด P เป็นจุดปลายส่วนโค้ง

 

จากที่เราได้ทำความรู้จักกับวงกลมหนึ่งหน่วยและจุดปลายส่วนโค้งแล้ว ต่อไปเราจะมาทำความเข้าใจเรื่องการวัดความยาวส่วนโค้งกันนะคะ

การวัดความยาวส่วนโค้ง ของวงกลมหนึ่งหน่วย

กำหนดให้ θ ∈ \mathbb{R} จะบอกว่า P(θ) เป็นจุดปลายส่วนโค้งที่ยาว |θ| หน่วย โดยวัดจาก (1,0) ไปตามส่วนโค้งของวงกลม ซึ่งจะมีทั้งทิศทวนเข็มนาฬิกา และตามเข็มนาฬิกา

ต่อไปเราจะมาพิจารณา θ นะคะ

ถ้า θ ≥ 0 จะได้ว่าเป็นการวัดไปในทิศทางทวนเข็มนาฬิกา

ถ้า θ < 0 จะได้ว่าเป็นการวัดไปในทิศทางตามเข็มนาฬิกา

และเราจะให้ส่วนโค้งวงกลมหนึ่งหน่วยที่ยาว θ หน่วย มีโคออร์ดิเนทจุดปลายส่วนโค้งเป็น (x, y) นั่นคือ P(θ) = (x, y)

การวัดความยาวส่วนโค้ง

 

ตอนนี้เราก็รู้วิธีการวัดความยาวของวงกลมหนึ่งหน่วยแล้วนะคะ ต่อไปเราจะมาลองทำแบบฝึกการเขียนกราฟวงกลมหนึ่งหน่วยแสดงจุดปลายส่วนโค้ง

พิกัดจุดปลายส่วนโค้ง

ความยาวส่วนโค้ง

ในหัวข้อนี้พี่มาบอกวิธีการดูพิกัดจุด ว่าทำไมความยาวส่วนโค้งแต่ละพิกัดจุดที่เริ่มจากจุด(1, 0) ถึงเป็นดังรูป

เมื่อเราแบ่งวงกลมหนึ่งหน่วยออกเป็น 24 ส่วนเท่าๆกัน จะได้ว่า พิกัดจุดปลายส่วนแรกมีความยาวเป็น การวัดความยาวส่วนโค้ง = การวัดความยาวส่วนโค้ง  คือ ความยาวเส้นรอบวงของวงกลมหนึ่งหน่วย แต่เรามองความยาวถึงแค่ 1 ส่วน ใน 24 ส่วน จึงต้องหารด้วย 24)

การวัดความยาวส่วนโค้ง

เมื่อแบ่งวงกลมหนึ่งหน่วยออกเป็น 12 ส่วนเท่าๆกัน จะได้ว่าจุดปลายส่วนแรกมีความยาวเป็น \frac{2\pi }{12}=\frac{\pi }{6} และจุดต่อไปก็จะเป็น \frac{2\pi }{6}, \frac{3\pi }{6} ..., \frac{12\pi }{6}=2\pi

การวัดความยาวส่วนโค้ง

 

เมื่อเราแบ่งวงกลมออกเป็น 8 ส่วนเท่าๆกัน จะได้ว่า จุดปลายส่วนแรกมีความยาวเป็น การวัดความยาวส่วนโค้ง

การวัดความยาวส่วน

เมื่อเราแบ่งวงกลมออกเป็น 6 ส่วนเท่าๆกัน จะได้ว่าจุดปลายส่วนแรกมีความยาวเป็น การวัดความยาวส่วนโค้ง

ความยาวส่วน

เมื่อเราแบ่งวงกลมออกเป็น 4 ส่วนเท่าๆกัน จะได้ว่าจุดปลายส่วนแรกมีความยาวเป็น \frac{2\pi }{4}=\frac{\pi }{2}

นอกจากนี้เรายังสามารถแบ่งวงกลมเป็นส่วนให้เล็กลงไปอีกนอกเหนือจากที่กล่าวมาได้ เช่น อาจจะแบ่งเป็น 28 ส่วนเท่าๆกัน ก็จะได้จุดแรกมีความยาวเป็น \frac{2\pi }{28}=\frac{\pi}{14}

นอกจากน้องๆจะต้องรู้ความยาวส่วนปลายแล้ว สิ่งที่ต้องรู้อีกอย่างหนึ่งคือ จตุภาค (quadrant) ซึ่งจะแบ่งเป็น 4 จตุภาค

ความยาวส่วนโค้ง

 

(+, +) คือ ค่า x และ y เป็นจำนวนบวก

(-, -) คือ ค่า x และ y เป็นจำนวนลบ

(-, +) คือ ค่า x เป็นจำนวนลบ ค่า y เป็นจำนวนบวก

(+, -) คือ ค่า x เป็นจำนวนบวก ค่า y เป็นจำนวนลบ

 

เรามาดูตัวอย่างกันนะคะ

จากรูป เราจะได้ว่า จุด P(\frac{\pi }{3}) อยู่ควอดรันต์ที่ 1

จุด P(\frac{2\pi }{3}) อยู่ควอดรันต์ที่ 2

จุด P(\frac{4\pi }{3}) อยู่ควอดรันต์ที่ 3

จุด P(\frac{5\pi }{3}) อยู่ควอดรันต์ที่ 4

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

การอ้างเหตุผล

บทความนี้จะทำให้น้องๆเข้าใจหลักการอ้างเหตุผลมากขึ้นและสามารถตรวจสอบได้ว่า การอ้างเหตุผล สมเหตุสมผลหรือไม่

Suggesting Profile

การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

  สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ “Easy Imperative Sentences” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base form (V.1)

จำนวนตรรกยะ

จำนวนตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนตรรกยะ และการเปลี่ยนเศษส่วนเป็นทศนิยมหรือทศนิยมเป็นเศษส่วน

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1