โดเมนของความสัมพันธ์

สารบัญ

โดเมนของความสัมพันธ์

โดเมนของความสัมพันธ์ r คือ สมาชิกตัวหน้าของคู่อันดับในความสัมพันธ์ r เขียนแทนด้วย D_r

กรณีที่ r เขียนแบบแจกแจงสมาชิก เราสามารถหาโดเมนได้เลยโดย D_r คือสมาชิกตัวหน้า

เช่น r_1 = {(2, 2), (3, 4), (8, 9)}

จะได้ว่า D_{r_1} = {2, 3, 8}

กรณีที่ r เขียนในรูปแบบที่บอกเงื่อนไข เราอาจจะสามารถนำมาเขียนแบบแจกแจงสมาชิกได้

เช่น ให้ A = {1, 2, 3} และ r_2 = {(x, y) ∈ A × A : y = 2x}

x = 1 ; y = 2(1) = 2

x = 2 ; y = 2(2) = 4

x = 3 ; y = 2(3) = 6

ได้คู่อันดับ ดังนี้ (1, 2), (2, 4), (3, 6) เนื่องจาก (x, y) ต้องเป็นสมาชิกใน A × A

และจาก (1, 2) ∈ A × A

(2, 4) ∉ A × A

(3, 6) ∉ A × A

ดังนั้น สามารถเขียน r ในรูปแจกแจงสมาชิกได้ดังนี้  r_2 = {(1, 2)}

สรุปได้ว่า D_{r_2} = {1}

แต่บางกรณีเราไม่สามารถแจกแจงสมาชิกได้ เช่น ให้ x, y เป็นจำนวนจริงใดๆ และ r_3 = {(x, y) : y = \frac{1}{x}}

โดเมนของ r_3 คือ ค่า x ทุกตัวที่เป็นไปได้ ที่ทำให้ y เป็นจำนวนจริง

การที่จะหา x ที่ทำให้ y เป็นจำนวนจริงนั้น จำนวนของ x ที่เป็นไปได้มีเยอะมากๆๆๆๆ หายังไงก็ไม่หมดแน่นอน เราจึงต้องเปลี่ยนมา x ที่ทำให้ y ไม่เป็นจำนวนจริง ถ้าไม่มี เราสามารถตอบได้เลยว่า โดเมนคือ จำนวนจริง

แต่! ในตัวอย่างนี้เหมือนจะมี x ที่ทำให้ y ไม่เป็นจำนวนจริง นั่นคือ x = 0 จะได้ว่า y = \frac{1}{0} ซึ่ง ไม่นิยาม

ดังนั้น โดเมนคือ จำนวนจริงทั้งหมดยกเว้น 0 เขียนได้เป็น D_{r_3} = \mathbb{R} – {0}

 

ตัวอย่างการหาโดเมนของความสัมพันธ์

1.) ให้ A = {1, 2, 3} และ r = {(x, y) : y = 2x , x ∈ A}

จาก x เป็นสมาชิกใน A 

x = 1 ; y = 2(1) = 2

x = 2 ; y = 4

x = 3 ; y = 6

r = {(1, 2), (2, 4), (3, 6)}

ดังนั้น D_r = {1, 2, 3} = A

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times\mathbb{R} : y = x²}

เงื่อนไขของ (x, y) ∈ \mathbb{R}\times\mathbb{R} 

พิจารณากราฟ y = x²

โดเมนของความสัมพันธ์

จะเห็นว่าค่ากราฟนั้นกางออกเรื่อยๆ  ค่า x เป็นไปได้เรื่อยๆไม่สิ้นสุด จาก โดเมนของความสัมพันธืคือ สมาชิกตัวหน้าของความสัมพันธ์ใน r นั่นคือ x นั่นเอง

ดังนั้น D_r = \mathbb{R}

 

3.) ให้ r = {(x, y) : y = \frac{1}{x-3}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของ y = \frac{1}{x-3} จะได้

โดเมนของความสัมพันธ์

จะเห็นได้ว่า กราฟในรูปนั้น x เป็นอะไรก็ได้ ยกเว้น 3 เพราะ  เมื่อลองลากเส้น x = 3 แล้ว กราฟของ y = \frac{1}{x-3} นั้นไม่ตัดกับเส้น x = 3 เลย

หรือเราลองสังเกตจากสมการก็ได้ว่า ถ้า x = 3 จำทำให้ตัวส่วนเป็น 0 ซึ่งหาค่าไม่ได้ (ไม่นิยาม) ดังนั้น x อยู่ใน R ยกเว้น 3

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = R – {3} หรือ D_r = {x : x ∈ R และ x ≠ 3}

 

4.) ให้ r = {(x, y) : y = \sqrt{x}} และ x, y เป็นจำนวนจริงใดๆ

พิจารณากราฟของสมการ y = \sqrt{x}

โดเมนของความสัมพันธ์

จะเห็นว่ากราฟที่ได้ x มีค่าตั้งแต่ 0 ไปเรื่อยๆ ไม่สิ้นสุด นั่นคือ x เป็นจำนวนจริงที่มากกว่าเท่ากับ 0

และโดเมนก็คือ ค่า x เพราะ x เป็นสมาชิกตัวหน้าของความสัมพันธ์ r 

ดังนั้น D_r = {x : x เป็นจำนวนจริง และ x ≥ 0}

 

วิดีโอ โดเมนของความสัมพันธ์

 

 

เนื้อหาที่เกี่ยวข้องกับโดเมนของความสัมพันธ์

 

  1. กราฟของความสัมพันธ์
NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ Quantity words

การใช้ Quantity words เช่น many/ much/ a lot of/ lots of and etc.

Hi guys! สวัสดีค่ะนักเรียนชั้นม.2 ทุกคนวันนี้เราจะไปเรียนรู้ “การใช้ Quantity words เช่น many/ much/ a lot of/ lots of and etc. ” ในภาษาอังกฤษกันค่ะ Let’s go! ไปลุยกันโลด Quantity words คืออะไร

M6 Phrasal Verbs

Phrasal Verbs 

สวัสดีค่ะนักเรียนชั้นม.6 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด   ความหมาย Phrasal Verbs  Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป ไม่เป็นทางการมาก ข้อดีคือจะทำให้ภาษาใกล้เคียงกับเจ้าของภาษามากขึ้นนั่นเองจ้า

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น สมการที่ไม่มีตัวแปร                           

NokAcademy_ม2 การใช้ Yes_No Questions  และ Wh-Questions

การใช้ V. to be + ร่วมกับ Who/ What/Where…

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ Wh-questions ร่วมกับการใช้ V. to be” ไปลุยกันเลยจร้า Sit back, relax, and enjoy the lesson! —นั่งพิงหลังชิวๆ ทำใจสบายๆ แล้วไปสนุกกับบทเรียนกันจร้า— Getting stared with ” Question Words

Phrasal verb with2 and 3

Two – and Three-Word Phrasal Verbs

สวัสดีค่ะนักเรียนชั้นม.4 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง “Two – and Three-Word Phrasal verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด ทบทวน Phrasal verbs    Phrasal verb คือ กริยาวลี  มีที่มาคือ เป็นการใช้กริยาร่วมกันกับคำบุพบท แล้วทำให้ภาษาพูดดูเป็นธรรมชาติมากขึ้น  เรามักไม่ค่อยเจอคำลักษณะนี้ในภาษาอังกฤษที่เป็นทางการ  ซึ่งในบทเรียนนี้เราจะไปดูตัวอย่างการใช้  กริยาวลีที่มี 2