เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง

สารบัญ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะมีความเกี่ยวข้องกับกรณฑ์ในบทความ จำนวนจริงในรูปกรณฑ์ จากที่เรารู้ว่า จำนวนตรรกยะคือจำนวนที่สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มได้ เช่น \frac{2}3{} , \frac{5}{4}, \frac{1}{2}, 2 , 3 เป็นต้น ดังนั้นเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ ก็คือจำนวนจริงใดๆยกกำลังด้วยจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็ม เช่น \mathrm{5^{\frac{2}{3}}} , 3^{\frac{5}{4}} เป็นต้น

โดยนิยามของเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ คือ

เลขยกกำลัง เมื่อ k และ n เป็นจำนวนเต็ม และ n > 1

เราเรียก

เลขยกกำลัง ว่า เลขยกกำลัง

a คือ เลขฐาน

\frac{k}{n} คือ เลขชี้กำลัง

 

ตัวอย่าง

เลขยกกำลัง = \sqrt[3]{5^{2}}

เลขยกกำลัง = \sqrt[4]{3^{5}} = 3\sqrt[4]{3}

สมบัติของ เลขยกกำลัง ที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

ให้ a, b เป็นจำนวนจริง และ m, n เป็นจำนวนเต็ม

1.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

(2^x)(2^y)=2^{x+y}

 

2.) เลขยกกำลัง , a\neq 0

ตัวอย่าง

เลขยกกำลัง

 

3.) เลขยกกำลัง

ตัวอย่าง

(7^3)^2=7^{3\times 2}=7^6

 

4.) เลขยกกำลัง

ตัวอย่าง

เลขยกกำลัง

 

5.)  เลขยกกำลัง

ตัวอย่าง

\frac{3^2}{5^2}=(\frac{3}{5})^2

 

ตัวอย่างการใช้งานสมบัติและนิยาม

 

ตัวอย่างต่อไปนี้จะเป็นการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะให้อยู่ในรูปอย่างง่าย

เลขยกกำลัง

การบวก ลบ คูณ และหาร เลขยกกำลัง

ตัวอย่างนี้เป็นวิธีการบวก ลบ คูณ หาร เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ

เราจะหาค่าของ 2^{0}+(0.027)^{\frac{1}{3}}+(8)^{\frac{1}{3}}(25)^{\frac{1}{2}}-(0.0081)^{\frac{1}{4}}

การที่ตัวเลขเหล่านี้จะบวกลบกันได้ง่ายขึ้นอาจจะต้องทำให้เลขชี้กำลังหายหรือทำให้เป็นจำนวนเต็ม

เราลองมาจัดรูปใหม่ โดยการพิจารณาตัวเลขต่อไปนี้

2^{0} = 1

0.027 = 0.3^3

8=2^3

25=5^2

0.0081=0.3^4

ดังนั้นจะได้รูปใหม่ได้เป็น

เลขยกกำลัง

 

 

วิดีโอเพิ่มเติม

 

การทำแบบฝึกหัดในบทความนี้ไม่มีวิธีที่แน่นอนตายตัวบางข้ออาจจะต้องใช้สมบัติหลายอย่าง บางข้ออาจจะต้องใช้นิยามช่วย แบบฝึกหัดเหล่านี้ต้องอาศัยการสังเกตและอาศัยการฝึกทำแบบฝึกหัดบ่อยๆ เพื่อที่น้องๆจะได้เจอแบบฝึกหัดหลายรูปแบบและจะทำให้น้องๆพร้อมสำหรับการสอบในสนามสอบต่างๆอีกด้วย

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย
เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ จำนวนตรงข้าม       “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)           

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์

ค่าของฟังก์ชันไซน์และโคไซน์ ค่าของฟังก์ชันไซน์และโคไซน์ จะเกี่ยวข้องกับ θ พิกัดของ จุด (x, y) ซึ่งในบทความนี้จะอธิบายเกี่ยวกับ ความสัมพันธ์ระหว่าง x, y กับ θ จากบทความที่ผ่านมาเราได้รู้จักวงกลมหนึ่งหน่วยและการวัดความยาวส่วนโค้ง ในบทความนี้น้องๆจะได้รู้จักกับฟังก์ชันไซน์ (sine function) และฟังก์ชันโคไซน์ (cosine function) และวิธีการหาค่าของฟังก์ชันทั้งสอง Sine function =

การหารเลขยกกำลัง

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก บทความนี้ ได้รวบรวมตัวอย่าง การหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการหารของเลขยกกำลัง ก่อนจะเรียนรู้ ตัวอย่างการหารเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก น้องๆจำเป็นต้องมีความรู้ในเรื่อง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ⇐⇐ สมบัติของการหารเลขยกกำลัง  am ÷ an  = am – n     (ถ้าเลขยกกำลังฐานเหมือนกันหารกัน ให้นำเลขชี้กำลังมาลบกัน)

ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย (ค.ร.น.)

ตัวคูณร่วมน้อย(ค.ร.น.) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง ตัวตั้งร่วมหรือพหุคูณร่วมที่มีค่าน้อยที่สุดของจำนวนนับเหล่านั้น

สำนวน สุภาษิต

แยกให้ออก บอกให้ถูกสำนวน สุภาษิต คำพังเพยแตกต่างกันอย่างไร?

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคนกลับมาเข้าสู่เนื้อหาการเรียนภาษาไทยกันอีกเช่นเคย สำหรับวันนี้จะเป็นบทเรียนที่ทั้งสนุก มีสาระ และเป็นเนื้อหาที่เราต้องได้เจอบ่อย ๆ ในการเรียนภาษาไทยอย่างเรื่องสำนวน สุภาษิต และคำพังเพย น้อง ๆ อาจจะเคยได้ผ่านหูผ่านตากันมาบ้างเพราะเป็นบทเรียนที่ได้เริ่มเรียนตั้งแต่ช่วงประถมศึกษาแล้ว แต่วันนี้เราจะมาเรียนรู้ในเชิงลึกขึ้นไปอีกเกี่ยวกับวิธีการสังเกตระหว่างสำนวน สุภาษิต และคำพังเพยนั้นมีความเหมือน หรือแตกต่างกันอย่างไร มีตัวอย่างประกอบให้ทุกคนได้ดูด้วย ถ้าน้อง ๆ คนไหนพร้อมแล้วก็ไปลุยกับเนื้อหาของวันนี้ได้เลย   สำนวน สำนวน