ฟังก์ชันและกราฟของฟังก์ชัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y

 

ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ

จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B

เซต A จะถูกเรียกว่า โดเมน และ สมาชิกของ x แต่ละตัวใน A ที่ถูกส่งไปยัง สมาชิกบางตัวของ y เราจะเรียกสมาชิกบางตัวของ y ว่า ภาพของ x และเรียกสมาชิกในภาพว่า เรนจ์

อ่านแล้วอาจจะงงๆลองมาดูตัวอย่างกันค่ะ

ตัวอย่าง

จากรูปจะเห็นว่า เรนจ์ไม่จำเป็นต้องเท่ากับ B สมาชิกบางตัวของ B ไม่จำเป็นต้องเป็นสมาชิกในเรนจ์ก็ได้

เมื่อเราเข้าใจว่าโดเมน และเรนจ์แล้วเรามาทำความเข้าใจกับฟังก์ชันและกราฟของฟังก์ชันกันต่อเลยค่ะ

ฟังก์ชัน

 

ฟังก์ชัน หมายถึง ความสัมพันธ์ (x, y) ใดๆ โดยที่ ถ้าตัวหน้าเหมือนกัน ตัวหลังจะต้องเหมือนกัน

แปลให้ง่ายก็คือ สมาชิกตัวหน้าจะต้องไม่เหมือนกันนั่นเองค่ะ

เช่น (1, 2) (2, 5) (-3, 4) เป็นฟังก์ชัน เพราะไม่สมาชิกของโดเมน จับคู่กับเรนจ์มากกว่า 1 ตัว

ในกรณีที่ฟังก์ชันเป็นกราฟ ให้เราลากเส้นขนาดแกน y ถ้าเกิดว่าเส้นที่เราสร้างขึ้นมาตัดกับกราฟของฟังก์ชันเกิน 1 จุด สรุปได้เลยว่ากราฟนั้นไม่เป็นฟังก์ชัน

เพราะอะไรถึงไม่เป็นฟังก์ชัน??

จากนิยามที่บอกว่า สมาชิกตัวหน้าต้องไม่เหมือนกัน

สมมติฟังก์ชันตัดกับกราฟที่เราสร้างขึ้น 2 จุด แสดงว่าค่า x 1 ค่า เกิดค่า y 2 ค่า มันก็เหมือนกับว่าสมาชิกตัวหน้ามันเหมือนกัน จึงไม่เป็นฟังก์ชัน

เช่น 

จากกราฟข้างต้นจะเห็นว่า เมื่อ x = 1 จะได้  y = 1 , -1 จะเห็นกว่า ได้ค่า y มาสองค่า กราฟนี้จึงไม่เป็นฟังก์ชันนั่นเอง

ฟังก์ชันจาก A ไป B

ให้ f เป็นฟังก์ชัน

f เป็นฟังก์ชันจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็นสับเซตของ B

เขียนแทนด้วย  f : A →B

หมายความว่า สมาชิกทุกตัวใน A ทุกใช้จนหมด แต่สมาชิกใน B ไม่จำเป็นต้องถูกใช้ทุกตัว

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันจาก A ไปทั่วถึง B

f เป็นฟังก์ชันจาก A ไปทั่วถึง B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็น A และเรนจ์เป็น B

หมายความว่า สมาชิกทั้งในเซต A และ B ถูกใช้จนหมด

เช่น

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันจาก A ไป B ซึ่ง เมื่อส่งสมาชิกใน A ไปแล้วจะต้องได้ค่าเรนจ์ที่แตกต่างกัน

หมายความว่า ค่า x 2 ค่า จะต้องไม่ได้ค่า y ที่ซ้ำกันนั่นเอง

เช่น 

ฟังก์ชันและกราฟของฟังก์ชัน

 

f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B หมายความว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งและเป็นฟังก์ชันทั่วถึง

 

กราฟของฟังก์ชัน

 

กราฟของฟังก์ชัน คือ กราฟของความสัมพันธ์ที่กำหนดโดยสมการ y = f(x) ในระบบพิกัดฉากซึ่งประกอบไปด้วยจุดที่มีคู่อันดับเป็น (x, y) โดยที่ x เป็นสมาชิกในโดเมนของฟังก์ชัน และ y หรือ f(x) เป็นค่าของฟังก์ชันที่ขึ้นอยู่กับ x  และเราสามารถนำฟังก์ชันนี้มาเขียนกราฟในระบบพิกัดฉากได้

อธิบายง่ายๆได้ใจความคือ x เป็นตัวแปรอิสระ และ y เป็นตัวแปรตาม

ค่าของ y จะเปลี่ยนไปตาม x นั่นเอง

 

เช่น   y = x + 2 หรือเขียนอีกแบบคือ f(x) = x + 2

สมมติเราให้ x = 0 เราจะได้ว่า y = 0 + 2 นั่นคือ y = 2

สมมติให้ x = 1 เราจะได้ว่า y = 1 + 2 นั่นคือ  y = 3

ให้ x = -2  เราจะได้ว่า  y = (-2) + 2 นั่นคือ y = 0

เราจะเห็นว่า เมื่อค่า x เปลี่ยนไปค่า y ก็จะเปลี่ยนตามค่าของ x

จากการแทนค่าข้างต้น เราสามารถเขียนคู่อันดัล (x, y) ได้ดังนี้

(0, 2) , (1, 3) , (-2, 0)

และจากคู่อันดับเราสามารถนำมาเขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

การเขียนกราฟโดยการเลื่อนขนาน

ถ้า c > 0 แล้วจะได้ว่า

  1. กราฟของ y = f(x) + c คือ กราฟของ y = f(x) ที่ถูกเลื่อนขึ้นไปข้างบนเป็นระยะ c หน่วย
  2. กราฟของ y = f(x) – c คือ กราฟของ y = f(x) ที่ถูกเลื่อนลงข้างล่างเป็นระยะ c หน่วย
  3. กราฟของ y = f(x + c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางขวาเป็นระยะ c หน่วย
  4. กราฟของ y = f(x – c) คือ กราฟของ y = f(x) ที่ถูกเลื่อนไปทางซ้ายเป็นระยะ c หน่วย

ตัวอย่าง

จงเขียนกราฟของ f(x)=\left | x \right |+5

กราฟของ f(x)=\left | x \right |+5 คือ กราฟของ y= \left | x \right | ที่ถูกเลื่อนขึ้นข้างบน 5 หน่วยนั่นเอง 

เขียนกราฟได้ดังนี้

ฟังก์ชันและกราฟของฟังก์ชัน

 

วิดีโอเกี่ยวกับ ฟังก์ชันและกราฟของฟังก์ชัน

 

ฟังก์ชัน

 

 

กราฟของฟังก์ชัน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

บทละครพูดเรื่องเห็นแก่ลูก

ศึกษาตัวบทและคุณค่าที่อยู่ใน บทละครพูดเรื่องเห็นแก่ลูก

บทละครพูดเรื่องเห็นแก่ลูก เป็นบทละครพูดเรื่องแรกของไทยที่พระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัวเป็นผู้ประพันธ์ โดยมุ่งหวังให้ละครเป็นตัวช่วยกล่อมเกลาจิตใจประชาชน แต่นอกจากตัวบทจะมีความโดดเด่นจนได้รับความนิยมอย่างมากแล้ว ยังแฝงแนวคิดมากมายไว้ในเรื่อง จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้เรื่องพร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ใน บทละครพูดเรื่องเห็นแก่ลูก     ตัวบทที่ 1    พระยาภักดี : ใครวะ อ้ายคำ : อ้างว่าเป็นเกลอเก่าของใต้เท้า

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

การนำเสนอข้อมูลในรูปแบบกราฟเส้น

ในบทคาวมนี้จะนำเสนอเนื้อของบทเรียนเรื่องกราฟเส้น นักเรียนจะสามารถเข้าในหลักการอ่านและการวิเคราะห์ข้อมูลจากกราฟเส้น รวมไปถึงสามารถมองความสัมพันธ์ของข้อมูลในแกนแนวตั้งและแนวนอนของกราฟเส้นได้อย่างถูกต้อง

สมบัติการคูณจำนวนจริง

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย การให้เหตุผลแบบอุปนัย คือ การนำประสบการณ์มาสรุปผล เช่น เราไปซื้อผลไม้แล้วเราชิมผลไม้ 2-3 ลูก ปรากฏว่า มีรสหวาน เราเลยสรุปว่าผลไม้ทั้งกองนั้นหวาน เป็นต้น ซึ่งการสรุปผลอาจจะเป็นจริงหรือเท็จก็ได้ อาจจะขึ้นอยู่กับประสบการณ์ของผู้สรุป ดังนั้น ผลสรุปไม่จำเป็นต้องเหมือนกัน ตัวอย่างเช่น เหตุ เมื่อวานแป้งตั้งใจเรียน วันนี้แป้งตั้วใจเรียน ผลสรุป  พรุ่งนี้แป้งจะตั้งใจเรียน การให้เหตุผลแบบนี้ เหมือนเป็นการคาดคะเนเหตุการณ์ที่จะเกิดขึ้นต่อไป ซึ่งการคาดคะเนนี้อาจจะจริงหรือเท็จก็ได้

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่

การแจกแจงความถี่ของข้อมูล (Frequency distribution)              การแจกแจงความถี่ของข้อมูล  เป็นวิธีการทางสถิติอย่างหนึ่งที่ใช้ในการจัดข้อมูลที่มีอยู่ให้เป็นหมวดหมู่ เพื่อความสะดวกในการนำเสนอและการวิเคราะห์ข้อมูลเหล่านั้น  มี 2 ลักษณะ คือ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น และ ตารางแจกแจงความถี่แบบไม่เป็นอันตรภาคชั้น การสร้างตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น การนำเสนอข้อมูลในรูปตารางแจกแจงความถี่ แบบไม่เป็นอันตรภาคชั้น เหมาะสำหรับข้อมูลที่มีค่าจาการสังเกตไม่มากนักหรือไม่ซับซ้อน  1.

ความรู้เกี่ยวกับ การสื่อสาร มีอะไรบ้างที่เราควรรู้?

ความรู้เกี่ยวกับการสื่อสาร เป็นเรื่องที่สำคัญอย่างมากในปัจจุบัน แม้ว่าเราจะสื่อสารกับผู้คนอยู่แล้วทุกวัน แต่จะทำอย่างไรให้ตนเองสามารถสื่อสารได้อย่างถูกต้อง มีเรื่องไหนที่ควรรู้และควรระวัง บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องการสื่อสารให้ดียิ่งขึ้นไปอีก ถ้าอยากรู้แล้วว่าจะเป็นอย่างไรก็ไปดูกันเลยค่ะ   การสื่อสาร คืออะไร?   เป็นกระบวนการถ่ายทอดหรือแลกเปลี่ยนความคิด ข้อมูล ข้อเท็จจริง ความรู้ ความรู้สึก จากบุคคลหนึ่งไปยังอีกบุคคลหนึ่ง ให้มีความเข้าใจตรงกัน     การสื่อสารสำคัญอย่างมากตั้งแต่ในชีวิตประจำวันไปจนถึงอุตสาหกรรม การปกครอง การเมืองและเศรษฐกิจ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1