พาราโบลา

พาราโบลา

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

พาราโบลา

พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix)

พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด

กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา

พาราโบลา

พาราโบลา

สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้

พาราโบลา

ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y

เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ x

พาราโบลาที่มีจุดยอดที่จุด (h, k)

 

ความแตกต่างระหว่างจุดยอดที่จุดกำเนิดกับจุดยอดที่จุด (h, k)

ความแตกต่างมีแค่นิดเดียวเท่านั้นค่ะ คือ มี h และ k เข้ามาเกี่ยว น้องๆลองสังเกตดูนะคะ จากตอนแรกที่จุดยอด (0,0) จุดโฟกัส จะมีแค่ 0 กับ c (ซึ่งจะอยู่ตำแหน่งไหนก็แล้วแต่ลักษณะของกราฟ) สมการเส้นไดเรกตริกซ์ ก็จะมีแค่ c ที่เกี่ยวข้อง

แต่พอเป็น (h, k) เราแค่เพิ่มไป เช่น F(0, c) ก็กลายเป็น F(h, k+c) เป็นต้น

 

วิธีการจำ : พี่แนะนำให้น้องๆจำพาราโบลาที่จุดเป็น (h, k) ไปเลยนะคะ

ตัวอย่างที่ 1 จงหาสมการพาราโบลาที่มีจุดยอดที่ (0,0) และมีจุดโฟสัส (0,4) พร้อมบอกลักษณะของพาราโบลา

พาราโบลา

ตัวอย่างที่ 2 จงหาโฟกัสและเส้นไดเรกตริกซ์ของพาราโบลา \inline y^{2}=12x-4y+64

 

 

คลิปที่เกี่ยวข้องกับพาราโบลา

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ สมบัติสมมาตร ถ้า a = b แล้ว b = a เมื่อ a และ

ช่วงของจำนวนจริง

ช่วงของจำนวนจริง ช่วงของจำนวนจริง เอาไว้บอกขอบเขตของตัวแปรตัวแปรหนึ่ง เช่น x เป็นตัวแปรที่ไม่ทราบค่า a, b เป็นค่าคงที่ใดๆ a < x < b หมายความว่า ค่าของ x อยู่ระหว่าง a ถึง b เป็นต้น ช่วงของจำนวนจริง ประกอบไปด้วย ช่วงเปิดและช่วงปิด

กาพย์ห่อโคลงประพาสธารทองแดง

กาพย์ห่อโคลงประพาสธารทองแดง ถอดคำประพันธ์และคุณค่าในเรื่อง

หลังจากได้เรียนรู้ประวัติความเป็นมากันไปแล้ว บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้การถอดคำประพันธ์ กาพย์ห่อโคลงประพาสธารทองแดง ว่ามีความหมายอย่างไรบ้าง ตัวบทที่ยกตัวอย่างมาในวันนี้จะเป็นเรื่องใด ถ้าพร้อมแล้วเราไปเรียนรู้วรรณคดีเรื่องนี้พร้อม ๆ กันเลยค่ะ   ถอดคำประพันธ์           หัวลิงหมากกลางลิง    ต้นลางลิงแลหูลิง ลิงไต่กระไดลิง         

โคลงสี่สุภาพ เจาะลึกคำประพันธ์ที่กวีนิยมแต่งมากที่สุด

  โคลงสี่สุภาพ เป็นคำประพันธ์ประเภทหนึ่งของบทร้อยกรองที่กวีนิยมนำไปใช้กันมากมาย บทเรียนวันนี้ จะพาน้อง ๆ ไปเรียนรู้เรื่องของโคลงสี่สุภาพ ว่ามีฉันทลักษณ์และลักษณะคำประพันธ์อย่างไร ทำไมถึงได้รับความนิยมในหมู่กวี ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงสี่สุภาพคืออะไร     โคลง เป็นคำประพันธ์ที่มีการเรียบเรียงถ้อยคำเป็นคณะ มีกำหนดเอกโทและสัมผัส ส่วนสุภาพ หรือเสาวภาพ หมายถึงคำที่ไม่มีวรรณยุกต์ โคลงสี่สุภาพปรากฏในวรรณคดีไทยตั้งแต่สมัยอยุธยา โดยโคลงที่มีชื่อเสียงและได้รับการยกย่องว่าแต่งดี ยอดเยี่ยม

เรียนรู้บทร้องกรองสุภาษิต ตนเป็นที่พึ่งแห่งตน

การนำสุภาษิตมาแต่งเป็นบทร้อยกรอง เรียกว่า บทประพันธ์ร้อยกรองสุภาษิต ซึ่งบทที่น้อง ๆ จะได้เรียนกันในวันนี้คือบทร้อยกรองสุภาษิตเรื่อง ตนเป็นที่พึ่งแห่งตน เราไปดูกันเลยค่ะว่าที่มจากของบทร้อยกรองนี้จะเป็นอย่างไร มาจากสุภาษิตอะไร รวมไปถึงถอดความหมายตัวบท ศึกษาคำศัพท์ที่น่ารู้และศึกษาคุณค่าที่อยู่ในเรื่องด้วยค่ะ ถ้าพร้อมแล้วเราไปดูพร้อมกันเลย   ความเป็นมา ตนเป็นที่พึ่งแห่งตน     ตนเป็นที่พึ่งแห่งตน ผู้แต่งคือ นายเพิ่ม สวัสดิ์วรรณกิจ เป็นบทร้อยกรองประเภทกลอนแปด พิมพ์รวมอยู่ในหนังสือบทประพันธ์อธิบายสุภาษิตของวรรณคดีสมาคมแห่งประเทศไทย    

การเลื่อนขนาน

สำหรับการแปลงทางเรขาคณิตในบทนี้จะกล่าวถึงการแปลงที่จะได้ภาพที่มีรูปร่างเหมือนกันและขนาดเดียวกันกับรูปต้นแบบเสมอ โดยใช้การเลื่อนขนาน

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1