การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

causatives

Causatives: Have and Get Something Done

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้ไวยากรณ์เรื่อง Causatives หรือการใช้ Have/Get Something Done ที่น้องๆ บางคนอาจจะสงสัยว่าคืออะไร ลองไปดูกันเลยครับ

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

การเปลี่ยนแปลงของประโยค

การเปลี่ยนแปลงของประโยค ศึกษาธรรมชาติของภาษาที่ยังไม่ตาย

ภาษาเป็นกลไกสำคัญที่จะต้องเปลี่ยนแปลงควบคู่ไปกับสังคมมนุษย์ คำและประโยคในทุกภาษาอาจเปลี่ยนแปลงหรือหายไปพร้อมกับความเจริญและเสื่อมของสังคมตามยุคสมัย ภาษาที่ไม่มีการเปลี่ยนแปลงจะถูกนับเป็นภาษาที่ตายแล้ว ภาษาไทยเป็นอีกภาษาหนึ่งที่ยังคงมีความเปลี่ยนแปลงอยู่เสมอ บทเรียนในวันนี้เราจะพาน้อง ๆ ไปเรียนรู้เรื่อง การเปลี่ยนแปลงของประโยค หนึ่งในเรื่องราวที่น่าสนใจของเรื่องการเปลี่ยนแปลงทางภาษา จะมีอะไรบ้างนั้น เราไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การเปลี่ยนแปลงทางภาษา     ปัจจัยที่ทำให้เกิดการเปลี่ยนแปลงทางภาษา   1. เกิดจากปัจจัยทางสังคม   2. ลักษณะการออกเสียงของผู้พูด ในบางครั้งผู้พูดจะไม่สามารถออกเสียงคำได้อย่างถูกต้องทุกคำ

NokAcademy_Profile ม2 มารู้จักกับ (Connective Words)

 การใช้ตัวเชื่อม (Connective words)

Getting Started! มาเริ่มกันเลย   สวัสดีค่ะนักเรียน ม.3 ทุกคน วันนี้ครูจะพาไป ทบทวนงานเรื่อง  การใช้ตัวเชื่อม (Connective words) ที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วย  การใช้ตัวเชื่อมในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay

คำไทยที่มักอ่านผิด มีคำใดบ้างที่เราควรรู้?

การอ่านผิด เป็นปัญหาในการอ่านออกเสียง มีสาเหตุมาจากอ่านไม่ออก หรือ อ่านผิด หลายคนอาจมองว่าไม่สำคัญ แต่รู้หรือไม่คะ ว่าการอ่านนั้นมีความสำคัญอย่างมาก โดยเฉพาะหากเราอ่านผิด ก็จะทำให้ความหมายของคำนั้นผิดเพี้ยนไป หรือกลายเป็นคำที่ไม่มีความหมายไปเลยก็ได้ บทเรียน คำไทยที่มักอ่านผิด ในวันนี้ เราจะพาน้อง ๆ ไปเรียนรู้การอ่านสะกดคำที่ถูกต้อง กับคำในภาษาไทยที่คนส่วนใหญ่มักอ่านผิดกันบ่อย ๆ จะมีคำใดบ้าง ไปเรียนรู้พร้อมกันเลยค่ะ   คำไทยที่มักอ่านผิด   ลักษณะของการอ่านผิดมีดังนี้

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1