การดำเนินการของเซต

การดำเนินการของเซตประกอบไปด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต และผลต่าง เรื่องนี้เป็นอีกหนึ่งเรื่องที่เราจะได้ใช้ในบทต่อๆไป เรื่องนี้จึงค่อนข้างมีประโยชน์ในเรื่องของการเรียนเนื้อหาบทต่อไปง่ายขึ้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การดำเนินการของเซต คือ การนำเซตที่มีอยู่แล้วมาดำเนินการเพื่อให้ได้เซตใหม่ เราจะใช้แผนภาพเวนน์-ออยเลอร์เพื่อช่วยให้เห็นภาพและเข้าใจได้ง่ายขึ้น

การเขียนแผนภาพ เราจะใช้เอกภพสัมพัทธ์ U ด้วยรูปสี่เหลี่ยมผืนผ้า ส่วนเซตที่อยู่ใน U เราอาจจะเขียนแทนด้วยวงกลม วงรี หรือรูปอื่นๆ เช่น

การยูเนียน (union)

เราจะใช้สัญลักษณ์ ∪ แทนการยูเนียน

A ∪ B อ่านว่า A ยูเนียน B คือการเอาสมาชิกทั้งหมดในเซต A รวมกับ สมาชิกทั้งหมดในเซต B

เช่น ให้ A = {1,2,3} B = {1,a,b,c} จะได้ A∪B = {1,2,3,a,b,c}

สมบัติของการยูเนียน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∪Ø = A

2.) A∪B = B∪A

3.) A∪(B∪C) = (A∪B)∪C

4.) A∪A = A

การอินเตอร์เซกชัน (intersection)

เราจะใช้สัญลักษณ์ ∩ แทนการอินเตอร์เซกชัน

A∩B อ่านว่า A อินเตอร์เซกชัน B คือ เซตที่สร้างมาจากส่วนที่ A กับ B มีสมาชิกร่วมกัน

เช่น A = {1,2,3,4,5}  B = {2,4,5,a,b} จะได้ว่า A∩B = {2,4,5}

A∩B คือส่วนที่ A กับ B ซ้ำกัน

สมบัติของการอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์

1.) A∩Ø = Ø

2.) A∩U = A

3.) A∩B = B∩A

4.) (A∩B)∩C = A∩(B∩C) 

5.) A∩A = A

ตัวอย่างการยูเนียนและอินเตอร์เซกชัน

ให้ A,B,C เป็นเซตย่อยของเอกภพสัมพัทธ์ U

ให้แรเงาตามที่โจทย์กำหนด

1.) AB

2.) A∩B

3.) (A∩B)C

เราจะทำในวงเล็บก่อน

4.) A∩B∩C

ส่วนเติมเต็ม (complement)

ให้A เป็นเซตย่อยของ U เราจะใช้ A′ แทน ส่วนเติมเต็มของ A

พูดให้เข้าใจง่าย A′ ก็คือ ส่วนที่ไม่ใช่ A 

สมบัติของส่วนเติมเต็ม

ให้ A และ B เป็นเซตย่อยของ U

1.) (A′)′ = A

2.) A∩A′ = Ø

3.) AA′ = U

4.) (AB)′ = A′∩B′

5.) (A∩B)′ = A′B′

6.) Ø′ = U

7.) U′ = Ø

ผลต่างเซต (difference)

ให้ A และ B เป็นเซตย่อยของ U 

ผลต่างของเซต A กับเซต B เขียนแทนด้วย A-B 

A-B คือเซตที่มีสมาชิกของA แต่ไม่มีสมาชิกของ B


trick!! A-B ก็คือ เอาA ไม่เอา B

เช่น A = {1,2,3,4,a,b,c,d} B = {3,4,c,d,e,f}

จะได้ว่า A-B = {1,2,a,b} และ B-A = {e,f}

ภาพประกอบตัวอย่าง

สมบัติที่ควรรู้

 

ตัวอย่าง

ระบายสีตามที่โจทย์กำหนดให้

2.) ให้เอกภพสัมพัทธ์ U = {0,1,2,3,4,5,6,7,8,10}

A ={0,1,3,5,7,9},  B = {0,2,4,6,8,10}

C = {0,3,5,6,8}

จงหา

1.) (A∪B′)∪C

วิธีทำ จากโจทย์ จะได้ว่า (A∪B′)∪C = (A∪C)∪(B′∪C)

พิจารณา A∪C 

จากนั้นพิจารณา B′∪C

และนำทั้งสองมายูเนียนกัน จะได้

ดังนั้น (A∪B′)∪C = {0,1,3,5,6,7,8,9}

 

2.) (A∪C)∩(A∪B)

วิธีทำ พิจารณา (A∪C) จะได้

จากนั้นพิจารณา (A∪B) จะได้

จากนั้นก็นำทั้งสองมาอินเตอร์เซกชัน เราจะได้ส่วนที่ซ้ำกันดังนี้

ดังนั้น (A∪C)∩(A∪B) = {0,1,3,5,6,7,8,9}

 

3.) A-(B∩C)

วิธีทำ พอจารณา (B∩C) จะได้

จากนั้นพิจารณา A-(B∩C) จะได้

ดังนั้น A-(B∩C) = {1,3,5,7,9}

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ระดับภาษา เรียนรู้วิธีใช้ให้ถูกต้องและเหมาะสม

ระดับภาษา มีความสำคัญอย่างมากในภาษาไทย น้อง ๆ ทราบไหมคะว่าภาษาที่เราใช้กันอยู่ในทุกวันนี้ ก็มีระดับของมันที่จะเป็นตัวบ่งบอกความเหมาะสม ให้เราได้เลือกใช้กันอย่างถูกกาลเทศะ อยากรู้ไหมคะว่ามีกี่ระดับ แต่ละระดับเป็นอย่างไร ต้องใช้แบบไหน ใช้กับใครจึงจะถูก ถ้าพร้อมแล้ว ไปเรียนรู้บทเรียนภาษาไทยในวันนี้กันเลยค่ะ   ความหมายของ ระดับภาษา     ระดับภาษา หมายถึง ความลดหลั่นของถ้อยคำและการเรียบเรียงถ้อยคำที่ใช้โดยพิจารณาตามโอกาสหรือกาลเทศะ ความสัมพันธ์ระหว่างบุคคลที่เป็นผู้สื่อสาร ผู้รับสาร และเนื้อหาที่สื่อสาร  

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล

สมการเอกซ์โพเนนเชียล สมการเอกซ์โพเนนเชียล เป็นสมการที่จะมีเลขชี้กำลังเป็นตัวแปร เช่น ,   จากบทความที่ผ่านมาเราได้พูดถึงฟังก์ชันเอกซ์โพเนนเชียลไปแล้ว ในบทความนี้น้องๆจะได้เรียนรู้เกี่ยวกับการแก้สมการเอกซ์โพเนนเชียลซึ่งมีหลายวิธี  ซึ่งเรื่องสมการเอกซ์โพเนนเชียลนี้มักจะออกสอบบ่อยเรียกได้ว่าทุกปีเลย ดังนั้นวันนี้เราเลยยจะมาสอนน้องๆแก้สมการ และให้เทคนิคการแก้สมการเอกซ์โพเนนเชียล สำหรับใครที่ยังไม่ได้ทำความรู้จักกับฟังก์ชันเอกซ์โพเนนเชียลสามารถเข้าไปดูตามลิงค์นี้เลยค่ะ !!!ฟังก์ชันเอกซ์โพเนนเชียล!!! การแก้สมการเอกซ์โพเนนเชียล วิธีที่ 1 : ทำฐานให้เหมือนกัน เมื่อฐานเท่ากันแล้ว เราก็จะได้ว่าเลขชี้กำลังก็จะเท่ากันด้วย ตัวอย่าง    วิธีที่ 2 : ทำเลขชี้กำลังให้เหมือนกัน

M4 Past Passive

Past Passive in English

Hi guys! สวัสดีค่ะนักเรียนชั้นม.4 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง Past Passive กันค่ะ ก่อนอื่นจะต้องไปรู้ความหมายกันก่อนน๊าว่ามันคืออะไร พร้อมแล้วก็ไปลุยกันโลด   ความหมาย Past หมายถึง อดีต ส่วน Passive มาจาก Passive voice หมายถึง ประโยคที่ประธานถูกกระทำ รวมแล้วหมายถึงการใช้ Passive Voice

ผู้รู้ดีเป็นผู้เจริญ

ผู้รู้ดีเป็นผู้เจริญ เรียนรู้บทร้อยกรองจากพุทธศาสนสุภาษิต

สุภาษิต หมายถึงถ้อยคำที่กล่าวสืบต่อกันมาช้านาน และมีความหมายเป็นคติสอนใจ บางสุภาษิตพูดนำมาแต่งเป็นบทร้อยกรองเพื่อใช้เป็นบทอาขยานให้กับเด็ก ๆ ได้เรียน ได้ฝึกอ่าน รวมไปถึงให้เรียนรู้ข้อคิดจากสุภาษิตได้ง่ายมากขึ้น บทที่เราจะได้เรียนกันในวันนี้คือ ผู้รู้ดีเป็นผู้เจริญ จะเป็นอย่างไรบ้างนั้น ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   ความเป็นมา ผู้รู้ดีเป็นผู้เจริญ     ผู้รู้ดีเป็นผู้เจริญเป็นบทร้อยกรองที่ถูกประพันธ์ขึ้นโดยพระยาอุปกิตศิลปสาร แต่งด้วยโคลงสี่สุภาพ 1 บท และกาพย์ยานี 11

Suggesting Profile

การใช้ Imperative for Advice

สวัสดีค่ะนักเรียนชั้น ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ “การใช้ Imperative for Advice หรือ การใช้ประโยคแนะนำในภาษาอังกฤษ”กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจร้า ประโยคแนะนำที่เจอบ่อย (Imperative for advice) คำศัพท์น่าสนใจ Advice (Noun): คำแนะนำ Advise (Verb): แนะนำ ประโยคคำแนะนำ ส่วนใหญ่แล้วจะเจอในรูปแบบของประโยคบอกเล่า ซึ่งจะมีความหมายในทางเสนอแนะ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1