โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐

ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้

<   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง

>   แทนความสัมพันธ์มากกว่า หรือเกิน

≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน

 แทนความสัมพันธ์มากกว่าหรือเท่ากับ หรือไม่ต่ำกว่า / ไม่น้อยกว่า

≠  แทนความสัมพันธ์ไม่เท่ากับ หรือ ไม่เท่ากัน

         เราจะใช้ประโยชน์จากการแก้อสมการเชิงเส้นตัวแปรเดียวที่ได้ศึกษามาแล้ว นำมาช่วยแก้ปัญหาที่เกี่ยวข้องกับอสมการเชิงเส้นตัวแปรเดียว ขั้นตอนวิธีคล้ายกับการแก้ปัญหาโจทย์สมการเชิงเส้นตัวแปรเดียว  ดังนี้

  1. สมมติตัวแปรแทนสิ่งที่โจทย์ถามหรือเกี่ยวข้องกับสิ่งที่โจทย์ถาม
  2. สร้างอสมการด้วยเงื่อนไขในโจทย์ที่กำหนดให้ 
  3. แก้อสมการเพื่อหาคำตอบ

น้องๆ สามารถศึกษาวิธีการแก้โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ได้จากตัวอย่าง ต่อไปนี้

โจทย์ปัญหาเกี่ยวกับจำนวน

ตัวอย่างที่ 1  ถ้าสองเท่าของจำนวนเต็มบวก จำนวนหนึ่งมากกว่า 20 อยู่ไม่ถึง 8 จงหาว่าจำนวนๆนั้นเป็นจำนวนใดได้บ้าง

อธิบายเพิ่มเติมใช้สัญลักษ์ <  แทน ไม่ถึง 

วิธีทำ   สมมติว่าจำนวนที่ต้องการ คือ  x

   จากโจทย์จะได้ว่า   2x  –  20  <  8

   หาคำตอบของอสมการข้างต้นได้ดังนี้

     2x – 20  <  8

                                             2x   <  8  +  20

            2x   <  28

              x   <  14

แต่  2x  จะต้องมากกว่า  20

นั้นคือ  x  ต้องมากกว่า  10

ดังนั้น  คำตอบคือจำนวนเต็มบวกทุกจำนวนที่มากกว่า 10 และน้อยกว่า 14 ซึ่งได้แก่ 11, 12 และ 13

ตัวอย่างที่ 2  จำนวนจำนวนหนึ่งถูกหักไป ¹⁷⁄₁₈  แล้วยังมีค่ามากกว่า  ³¹⁄₉   อยากทราบว่าจำนวนจำนวนนั้นเป็น จำนวน ที่น้อยกว่า 4 ได้หรือไม่

วิธีทำ   สมมติให้จำนวนนั้นเป็น    x

   ถูกหักไป ¹⁷⁄₁₈ ยังมีค่ามากกว่า  ³¹⁄₉      

   ดังนั้น    x – ¹⁷⁄₁₈  > ³¹⁄₉ 

                          x > ³¹⁄₉ + ¹⁷⁄₁₈  

         x  > ⁷⁹⁄₁₈

         x  > 4\frac{7}{18}        

ดังนั้น  จำนวนนั้นจะน้อยกว่า  4  ไม่ได้  จำนวนนั้นต้องมากกว่า  4\frac{7}{18}   

ตัวอย่างที่ 3  สามเท่าของจำนวนจำนวนหนึ่งหักออกเสีย 5 จะมีผลลัพธ์ไม่ถึง  22  จงหาจำนวนจำนวนนั้น

อธิบายเพิ่มเติมใช้สัญลักษ์ <  แทน ไม่ถึง,  หักออก คือการลบ

วิธีทำ    ให้จำนวนจำนวนนั้น คือ  a                             

            สามเท่าของจำนวนจำนวนหนึ่งหักออกเสีย  5  จะได้   3a  –  5  มีผลลัพธ์ไม่ถึง  22    

            เขียนเป็นอสมการได้ ดังนี้     3a  –  5  <  22                       

            นำ  5  บวกทั้งสองข้างของอสมการ         

            จะได้    3a  –  5 + 5   <  22  +  5       

                                     3a  <  27       

            นำ  ¹⁄₃  คูณทั้งสองข้างของอสมการ         

            จะได้    3a x ¹⁄₃  <  27  x ¹⁄₃ 

                                 a  <  9  

ตรวจคำตอบ ถ้า a  <  9  ให้  a = 8.99  สามเท่าของจำนวนจำนวนหนึ่งหักออกเสีย  5 มีผลลัพธ์ไม่ถึง 22 

                           จะได้  3(8.99)  –  5  <  22                           

                                      26.97  –  5  <  22                           

                                              21.97  <  22  เป็นจริง                       

ดังนั้น จะได้ว่าจำนวนจริงทุกๆ จำนวนที่มีค่าน้อยกว่า 9  จะสอดคล้องกับอสมการ  3a  –  5  <  22       

โจทย์ปัญหาเกี่ยวกับผลบวกและผลต่าง

ตัวอย่างที่ 4 สามเท่าของผลต่างระหว่างจำนวนจำนวนหนึ่งกับ 2  มีค่าไม่น้อยกว่า  21  จงหาจำนวนจำนวนนั้น

อธิบายเพิ่มเติมใช้สัญลักษ์   แทน ไม่น้อยกว่า , ผลต่าง คือการลบ

วิธีทำ    ให้จำนวนจำนวนนั้น  คือ   a                           

            สามเท่าของผลต่างระหว่างจำนวนจำนวนหนึ่งกับ 2 จะได้  3(a  –  2) มีค่าไม่น้อยกว่า  21  

            เขียนเป็นอสมการได้ดังนี้  3(a  –  2)  ≥  21                             

            นำ ¹⁄₃ คูณทั้งสองข้างของอสมการ                     

            จะได้  3(a  –  2) x  ¹⁄₃  ≥  21 x ¹⁄₃

                                a  –  2    ≥    7                                                   

             นำ  2  บวกทั้งสองข้างของอสมการ 

             จะได้  a – 2 + 2   ≥   7 + 2                                          

                                  a  ≥  9                                                  

ตรวจคำตอบ   ถ้า  a  ≥  9  ให้  a  =  9.01  สามเท่าของผลต่างระหว่างจำนวนจำนวนหนึ่งกับ  2  มีค่าไม่น้อยกว่า  21

      จะได้    3(9.01 – 2)  ≥  21                 

                               3(7.01)  ≥  21                      

                                21.03  ≥  21   เป็นจริง                   

ดังนั้น จะได้ว่าจำนวนจริงทุกๆ จำนวนที่มีค่ามากกว่าหรือเท่ากับ  9  จะสอดคล้องกับอสมการ  3(a  –  2) ≥  21

ตัวอย่างที่ 5 ผลบวกของจำนวนเต็มสามจำนวนเรียงกัน มีค่าไม่ถึง 96 จงหาจำนวนเต็มสามจำนวนที่มากที่สุดที่เรียงต่อกัน

อธิบายเพิ่มเติมใช้สัญลักษ์ <  แทน ไม่ถึง

วิธีทำ   สมมุติให้จำนวนเต็มน้อยที่สุดเป็น x

          จำนวนเต็มสามจำนวนเรียงต่อกัน x, x + 1, x + 2

          แต่ผลบวกของจำนวนเต็มที่เรียงต่อกันมีค่าไม่ถึง 96

          ประโยคสัญลักษณ์   x + (x + 1) + (x + 2) <  96

                                          x + x + 1 + x + 2  <  96

                                                        3x + 3  <  96

                                                   3x + 3 – 3  <  96 –3

                                                              3x  <  93

                                                       3x (¹⁄₃)  <  93 (¹⁄₃)

                                                               x   <  31

          เนื่องจากจำนวนเต็มที่น้อยกว่า 31 คือ 30

          จะได้ x ที่น้อยกว่า 31 คือ 30 ดังนั้น จำนวนถัดไปคือ 31 และ 32

          ดังนั้น จำนวนเต็มสามจำนวนที่มีค่ามากที่สุดเรียงต่อกัน แล้วผลบวกทั้งสามจำนวน ไม่ถึง 96 คือ 30, 31 และ 32

โจทย์ปัญหาในชีวิตประจำวัน

ตัวอย่างที่ 6 ดาลินซื้อน้ำขวดมาขาย 200 ขวด เป็นเงิน 1,200 บาท ขายน้ำขวดเล็กราคาขวดละ 5 บาท ขายน้ำขวดกลางราคาขวดละ 8 บาท เมื่อขายหมดได้กำไรมากกว่า 250 บาท อยากทราบว่า ดาลินซื้อน้ำขวดเล็กมาขายอย่างมากที่สุดกี่ขวด

วิธีทำ   ให้ ดาลินซื้อน้ำขวดเล็กมาขาย x ขวด

          จะได้ว่า ดาลินซื้อน้ำขวดกลางมาขาย 200 – x ขวด

          ขายน้ำขวดเล็กได้เงิน 5x บาท

          ขายน้ำขวดกลางได้เงิน 8(200 – x) บาท

          ขายน้ำทั้งหมดได้กำไรมากกว่า 250 บาท

                                           ราคาขาย    –   ต้นทุน = กำไร

          ประโยคสัญลักษณ์ 5x + 8(200 – x) – 1,200  >   250

                                    5x + 1,600 – 8x – 1,200  >   250

                                                       –3x + 400   >   250

                                                                 –3x   >   250 – 400

                                                                  –3x  >   –150 

(คูณด้วยจำนวนลบสัญลักษณ์อสมการเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม  >  เปลี่ยนเป็น <) 

         –3x (-¹⁄₃) <   –150 (-¹⁄₃)     

                                                                     x   <   50

ดังนั้น ดาลินซื้อน้ำขวดเล็กมาขายอย่างมากที่สุด 49 ขวด

ตัวอย่างที่ 7 ลลิตามีเหรียญบาทและเหรียญห้าบาทอยู่ในกระป๋องออมสินจำนวนหนึ่ง เมื่อเหรียญเต็มกระป๋อง เขาเทออกมานับพบว่า มีเหรียญบาทมากกว่าเหรียญห้าบาท 12 เหรียญ นับเป็นจำนวนเงินไม่น้อยกว่า 300 บาท หาว่ามีเหรียญห้าบาทอยู่อย่างน้อยกี่เหรียญ

อธิบายเพิ่มเติมใช้สัญลักษ์   แทน ไม่น้อยกว่า

วิธีทำ   เนื่องจากโจทย์พูดถึงจำนวนเงิน ดังนั้น เราต้องคำนึงถึงจำนวนเงิน

          สมมุติให้มีเหรียญห้าบาทอยู่จำนวน x เหรียญ คิดเป็นเงิน 5x บาท

          มีเหรียญบาทมากกว่าเหรียญห้าบาทอยู่ 12 เหรียญ คือ x + 12 เหรียญ

          คิดเป็นเงิน x + 12 บาท

          นับเป็นจำนวนเงินไม่น้อยกว่า 300 บาท  

          ประโยคสัญลักษณ์           5x + (x + 12)   ≥   300

                                                5x + x + 12   ≥   300

                                          5x + x + 12 – 12  ≥    300 – 12

                                                             6x   ≥    288

   6x ( ¹⁄₆)   ≥    288 ( ¹⁄₆)

                                                               x   ≥   48

ดังนั้น ลลิตามีเหรียญห้าบาทอยู่อย่างน้อย 48 เหรียญ

ตัวอย่างที่ 8 น้ำหนึ่งอ่านหนังสือเล่มหนึ่ง วันแรกอ่านได้ 40% ของเล่ม วันต่อมาอ่านได้อีก 25 หน้า รวมสองวันอ่านหนังสือได้มากกว่าครึ่งเล่ม จงหาว่าหนังสือเล่มนี้มีจำนวนไม่เกินกี่หน้า

อธิบายเพิ่มเติมใช้สัญลักษ์ <  แทน ไม่เกิน

วิธีทำ  สมมุติให้หนังสือเล่มนี้มีจำนวน x หน้า

          วันแรกอ่านได้ 40% ของเล่ม คิดเป็น   \frac{40x}{100} หน้า

          หนังสือครึ่งเล่ม คิดเป็น  \frac{x}{2}   หน้า

          ประโยคสัญลักษณ์                    \frac{40x}{100} + 25  >   \frac{x}{2} 

                                              \frac{40x}{100} + 25 – 25   >    \frac{x}{2} – 25

                                                                \frac{4x}{10}  >    \frac{x}{2} – 25

                                                          \frac{4x}{10} –  \frac{x}{2}  >   – 25

\frac{4x}{10} –  \frac{x}{2}  \frac{5}{5}  >   – 25

      \frac{4x}{10}\frac{5x}{10}  >   – 25

    \frac{-x}{10}  >   – 25

(คูณด้วยจำนวนลบสัญลักษณ์อสมการเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม  >  เปลี่ยนเป็น <) 

    \frac{-x}{10}  (-10) <  – 25 (-10)

                                                                 x  <  250

ดังนั้น หนังสือเล่มนี้มีจำนวนไม่เกิน 250 หน้า

เมื่อน้องๆเรียนรู้เรื่องการเแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว  จะทำให้น้องๆสามารถวิเคราะห์โจทย์ และแปลงให้อยู่ในรูปของอสมการเชิงเส้นตัวแปรเดียว และแก้อสมการได้อย่างถูกต้อง โดยสามารถนำความรู้ที่ได้จากการเรียนเรื่องอสมการเชิงเส้นตัวแปรเดียว มาประยุกต์ใช้กับการแก้โจทย์ปัญหาอสมการได้

วิดีโอ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว 

        คลิปวิดีโอนี้ได้รวบรวม วิธีการแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค ที่จะทำให้น้องๆมองวิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่�

เรียนรู้เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ

สวัสดีนักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดูวิธีการบอกข้อมูลทั่วไปเกี่ยวกับ  “เรื่อง Present Tense โดยมีคำบอกเวลา และเเต่งประโยคให้เข้ากับคำศัพท์เรื่องสถานที่ต่างๆ” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัวกันค่ะ ไปลุยกันโลดเด้อ Let’s go!   ทบทวน Present Simple Tense     Present แปลว่า ปัจจุบัน ดังนั้น Present Simple

ความสัมพันธ์ที่ “รู้จักฉัน รู้จักเธอ” ของเศษส่วนและทศนิยม

เศษส่วนและทศนิยมมีความสัมพันธ์กันคือสามารถเขียนเศษส่วนให้อยู่ในรูปของทศนิยมหรือเขียนทศนิยมให้อยู่ในรูปของเศษส่วนได้โดยค่าของเศษส่วน และทศนิยมนั้นจะมีค่าเท่ากัน บทความนี้จะอธิบายหลักการความสัมพันธ์ของเศษส่วนและทศนิยมพร้อมวิธีคิดที่เห็นภาพ ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้ คือการเปลี่ยนเศษส่วนให้เป็นทศนิยมและการเปลี่ยนทศนิยมให้เป็นเศษส่วนแล้วยังมีเทคนิคการสังเกตง่ายๆที่จะสามารถทำให้เราทำได้อย่างรวดเร็วและถูกต้องยิ่งขึ้น

สำนวนไทยที่เราควรรู้ และตัวอย่างการนำไปใช้ในชีวิตประจำวัน

น้อง ๆ เคยเป็นกันหรือเปล่าคะ เวลาที่อยากจะพูดอะไรสักอย่างแต่มันช่างยาวเหลือเกิน กว่าจะพูดออกมาหมดนอกจากคนฟังจะเบื่อแล้วยังอาจทำให้เขาไม่สนใจคำพูดของเราเลยก็เป็นไปได้ เพราะอย่างนั้นแหละค่ะในภาษาไทยของเราจึงต้องมีสิ่งที่เรียกว่าสำนวนขึ้นมาเพื่อใช้บอกเล่าเรื่องราวที่ถูกกลั่นกรองออกมาจนได้คำที่สละสลวย รวมใจความยาว ๆ ให้สั้นลง ทำให้เราไม่ต้องพูดอะไรให้ยืดยาวอีกต่อไป บทเรียนในวันนี้จะพาน้อง ๆ ไปทบทวนความรู้เรื่อง สำนวนไทย รวมถึงตัวอย่างสำนวนน่ารู้ในชีวิตประจำวันเพิ่มเติมด้วยค่ะ จะมีอะไรบ้างนั้น ไปดูกันเลย   ความหมายและลักษณะของ สำนวนไทย   สำนวน หมายถึง ถ้อยคำหรือสำนวนพูดหรือเขียนที่มีความหมายไม่ตรงกับรากศัพท์หรือตรงไปตรงมาตามพจนานุกรม แต่เป็นถ้อยคำที่มีความหมายเป็นอย่างอื่น

เรียนรู้เรื่อง ภาษาบาลี สันสกฤต ที่อยู่ในภาษาไทย

​  ภาษาบาลี สันสกฤต เป็นภาษาอินเดียโบราณ คำบาลี สันสกฤตที่นำมาใช้ในไทยจึงมักจะอยู่ในบทสวดเป็นส่วนใหญ่ แต่น้อง ๆ ทราบไหมคะว่าที่จริงแล้วนอกจากจะอยู่ในบทสวดมนต์ ภาษาไทยก็ยังมีอีกหลายคำเลยค่ะที่ยืมมาจากภาษาบาลี สันสกฤต เรียกได้ว่าถูกใช้ปนกันจนบางครั้งก็อาจทำให้เราสับสนไปได้ว่าสรุปนี่คือคำจากบาลี สันสกฤตหรือไทยแท้กันแน่ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความเข้าใจ เจาะลึกลักษณะภาษาพร้อมบอกทริคการสังเกตง่าย ๆ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ความเป็นมาของภาษาบาลี สันสกฤตในประเทศไทย     การยืมภาษา

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร

การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร บทความนี้ได้รวบรวมความรู้เรื่อง การแก้โจทย์ปัญหาโดยใช้ระบบสมการเชิงเส้นสองตัวแปร น้องๆจะต้องวิเคราะห์โจทย์ปัญหา แปลงโจทย์ปัญหาให้เป็นสมการ 2 สมการขึ้นไป และแก้สมการเพื่อหาคำตอบ ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆสามารถศึกษาเรื่อง การแก้ระบบสมการเชิงเส้นสองตัวแปร เพิ่มเติมได้ที่  ⇒⇒ การแก้ระบบสมการเชิงเส้นสองตัวแปร ⇐⇐ ตัวอย่างที่ 1 ในเข่งหนึ่งมีจำนวนมะม่วงและจำนวนมังคุดรวมกันอยู่ 68 ผล ถ้าจำนวนมะม่วงน้อยกว่าจำนวนมังคุดอยู่ 18 ผล    เข่งใบนี้มีมะม่วงและมังคุดอย่างละกี่ผล โจทย์กำหนดข้อมูลหรือความสัมพันธ์ใดมาให้บ้าง (โจทย์กำหนดข้อมูลมาให้ 2

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1