กราฟแสดงความสัมพันธ์ปริมาณเชิงเส้น

ในหัวข้อนี้ศึกษาเพิ่มเติมเกี่ยวกับกราฟที่มีลักษณะเป็นเส้นตรงส่วนหนึ่งของเส้นตรงหรือเป็นจุดที่เรียงอยู่ในแนวเส้นตรงเดียวกัน
Picture of tucksaga
tucksaga
กราฟแสดงความสัมพันธ์ปริมาณเชิงเส้น

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในการเขียนกราฟแสดงความสัมพันธ์ปริมาณเชิงเส้นกรณีที่กราฟมีลักษณะเป็นจุด เพื่อดูแนวโน้มของความสัมพันธ์เรานิยมเขียนต่อจุดเหล่านั้นให้เป็นส่วนหนึ่งของเส้นตรง

กราฟแสดงความสัมพันธ์ปริมาณเชิงเส้น

การเขียนแสดงความสัมพันธ์ระหว่างปริมาณสองชุดโดยใช้กราฟบนระนาบในระบบพิกัดฉากมาแล้ว มีทั้งกราฟที่เป็นเส้นตรงและไม่เป็นเส้นตรงให้พิจารณาสถานการณ์ต่อไปนี้

กราฟแสดงความสัมพันธ์ของปริมาณการซื้อขาย

ตัวอย่าง ตั้วและแต้วต้องการหารายได้พิเศษช่วงปิดเทอม จึงไปรับเสื้อมาช่วยกันขาย วันหนึ่งทั้งตัวและแต้วต่างก็ขายเสื้อได้จำนวนหนึ่ง แต่รวมกันแล้วเป็นจำนวนเสื้อทั้งหมด 9 ตัว จงเขียนกราฟแสดงความสัมพันธ์ระหว่างจำนวนเสื้อที่เป็นไปได้ซึ่งตั้วและแต้วขายได้

ถ้าให้ x แทนจำนวนเสื้อที่ตัวขายได้เป็นตัว

      y แทนจำนวนเสื้อที่แต้วขายได้เป็นตัว

จำนวนเสื้อที่แต่ละคนขายได้จะต้องเป็นจำนวนนับที่รวมกันเป็น 9 ดังตาราง

ตารางสมการเชิงเส้น

จากตารางเขียนคู่อันดับ (x, y) แสดงความสัมพันธ์ระหว่างจำนวนเสื้อที่ตัวและแต้วแต่ละคนขายได้ ได้ดังนี้ (1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1)

        เมื่อกำหนดให้แกน X แสดงจำนวนเสื้อที่ตัวขายได้เป็นตัว

        และ แกน Y แสดงจำนวนเสื้อที่แล้วขายได้เป็นตัว

กราฟแสดงความสัมพันธ์ระหว่างจำนวนเสื้อที่เป็นไปได้ซึ่งตั้วและแต้วขายได้เป็นดังนี้

กราฟขงเส้นตรง

จากกราฟจะเห็นว่าทุกจุดของคู่อันดับที่เป็นไปตามเงื่อนไขในโจทย์ข้างต้น จะอยู่ในแนวเดียวกันกับเส้นประดังรูป นั่นคือ จุดทุกจุดของคู่อันดับที่เป็นไปตามเงื่อนไขที่กำหนดจะเรียงอยู่ในแนวเส้นตรงเดียวกัน

กราฟแสดงความสัมพันธ์ของอุณหภูมิ

ตัวอย่าง การบอกอุณหภูมิในประเทศไทยและหลายประเทศ นิยมบอกโดยใช้หน่วยเป็นองศาเซลเซียส (°C) แต่ก็มีบางประเทศ เช่น สหรัฐอเมริกาบอกอุณหภูมิโดยใช้หน่วยเป็นองศาฟาเรนไฮต์ (°F) ความสัมพันธ์ของอุณหภูมิทั้งสองหน่วย แสดงได้ด้วยสมการ F =(9/5)c+32

        มื่อ C แทนอุณหภูมิในหน่วยองศาเซลเซียส

     และ F แทนอุณหภูมิในหน่วยองศาฟาเรนไฮต์

ตารางพลอตกราฟ

จากตารางเขียนคู่อันดับแสดงความสัมพันธ์ระหว่างอุณหภูมิในหน่วยองศาเซลเซียส กับอุณหภูมิในหน่วยองศาฟาเรนไฮต์ ได้ดังนี้ (-30, -22), (-20, 4), (-10, 14), (0, 32), (10, 50), (20, 68), (30, 86)

        เมื่อกำหนดให้แกน X แสดงอุณหภูมิในหน่วยองศาเซลเซียส

        แกน Y แสดงอุณหภูมิในหน่วยองศาฟาเรนไฮต์

จากข้อมูลในตารางเขียนกราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิในหน่วยองศาเซลเซียสกับอุณหภูมิในหน่วยองศาฟาเรนไฮต์ ได้ดังนี้

จุดบนกราฟ

 

จากกราฟจะเห็นว่า จุดแต่ละจุดในกราฟซึ่งแสดงความสัมพันธ์ระหว่างอุณหภูมิในหน่วยองศาเซลเซียสกับอุณหภูมิในหน่วยองศาฟาเรนไฮต์อยู่ในแนวเส้นตรงเดียวกัน

เนื่องจากเราสามารถหาอุณหภูมิในหน่วยองศาฟาเรนไฮต์ได้เสมอ ไม่ว่าอุณหภูมิในหน่วยองศาเซลเซียสจะเป็นเท่าใด ดังนั้นจึงเขียนกราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิในหน่วยองศาเซลเซียสกับอุณหภูมิในหน่วยองศาฟาเรนไฮต์ได้ในลักษณะที่ต่อเนื่องกันเป็นเส้นตรง ดังรูป

กราฟของเส้นตรง

 

จากกราฟเราสามารถหาค่าประมาณของอุณหภูมิในหน่วยองศาฟาเรนไฮต์ เมื่อทราบอุณหภูมิในหน่วยองศาเซลเซียส หรือค่าประมาณของอุณหภูมิในหน่วยองศาเซลเซียส เมื่อทราบอุณหภูมิในหน่วยองศาฟาเรนไฮต์เช่น ที่อุณหภูมิ 5 ° C เป็นอุณหภูมิประมาณ 40 ° F หรือที่อุณหภูมิ 8 ° F เป็นอุณหภูมิประมาณ 13 ° C ค่าประมาณเหล่านี้ สามารถอ่านได้จากกราฟโดยตรงซึ่งทำได้ง่ายและรวดเร็วกว่าการคำนวณจากสูตร F =(9/5)c +32

สถานการณ์ข้างต้นเป็นตัวอย่างของความสัมพันธ์ของปริมาณสองชุดที่มีกราฟอยู่ในแนวเส้นตรงเดียวกัน เราเรียกความสัมพันธ์ลักษณะเช่นนี้ว่าความสัมพันธ์เชิงเส้น ในการเขียนกราฟของความสัมพันธ์เชิงเส้นกรณีที่กราฟมีลักษณะเป็นจุด เพื่อดูแนวโน้มของความสัมพันธ์เรานิยมเขียนต่อจุดเหล่านั้นให้เป็นส่วนหนึ่งของเส้นตรง

คลิปวิดีโอตัวอย่างเรื่องกราฟแสดงความสัมพันธ์ปริมาณเชิงเส้น

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

เรียนรู้เรื่อง ภาษาบาลี สันสกฤต ที่อยู่ในภาษาไทย

​  ภาษาบาลี สันสกฤต เป็นภาษาอินเดียโบราณ คำบาลี สันสกฤตที่นำมาใช้ในไทยจึงมักจะอยู่ในบทสวดเป็นส่วนใหญ่ แต่น้อง ๆ ทราบไหมคะว่าที่จริงแล้วนอกจากจะอยู่ในบทสวดมนต์ ภาษาไทยก็ยังมีอีกหลายคำเลยค่ะที่ยืมมาจากภาษาบาลี สันสกฤต เรียกได้ว่าถูกใช้ปนกันจนบางครั้งก็อาจทำให้เราสับสนไปได้ว่าสรุปนี่คือคำจากบาลี สันสกฤตหรือไทยแท้กันแน่ บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความเข้าใจ เจาะลึกลักษณะภาษาพร้อมบอกทริคการสังเกตง่าย ๆ ถ้าพร้อมแล้วไปดูกันเลยค่ะ   ความเป็นมาของภาษาบาลี สันสกฤตในประเทศไทย     การยืมภาษา

สมบัติการบวกจำนวนจริง

สมบัติการบวกจำนวนจริง สมบัติการบวกจำนวนจริง เป็นสมบัติที่น้องๆต้องรู้ เพราะเป็นรากฐานของวิชาคณิตศาสตร์และน้องๆจะต้องใช้สมบัติพวกนี้ในการเรียนคณิตศาสตร์ในระดับที่สูงขึ้น สมบัติการบวกของจำนวนจริง มีทั้งหมด 5 ข้อ ดังนี้   1.) สมบัติปิดการบวก  สมบัติปิดการบวก คือ การที่เรานำจำนวนจริง 2 ตัวมาบวกกัน เราก็ยังได้ผลลัพธ์เป็นจำนวนจริงเหมือนเดิม เช่น 1 + 2 = 3 จะเห็นว่า

Profile Linking Verbs

มาทำความรู้จักกับ Linking Verbs ให้มากขึ้น

สวัสดีค่ะนักเรียนม.1 ที่น่ารักทุกคน วันนี้เราจะไปรู้จักกับ Linking Verbs ให้มากขึ้น แต่ก่อนอื่นไปดูความหมายของ Linking Verbs กันก่อนนะคะ ไปลุยกันเลย มาทำความรู้จักกับ Linking Verbs     Linking verbs คืออะไรกันนะ Linking แปลว่า การเชื่อม มาจากรากศัพท์ link ที่เป็นกริยาเติมด้วย

การสร้างตารางค่าความจริง

บทความนี้เป็นเนื้อหาเกี่ยวกับการสร้างตารางค่าความจริงของประพจน์ เป็นเนื้อหาที่ไม่ยากมากหลังจากน้องๆได้อ่านบทความนี้แล้ว น้องๆจะสามารถสร้างตารางค่าความจริงได้ สามารถบอกได้ว่าประพจน์แต่ละประพจน์เป็นจริงได้กี่กรณีและเป็นเท็จได้กี่กรณี และจะทำให้น้องเรียนเนื้อหาเรื่องต่อไปได้ง่ายยิ่งขึ้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1