การสะท้อน

ในบทความนี้เราจะได้เรียนรู้ภาพที่ได้จากการสะท้อน ( Reflection ) ไปตามแนวแกนต่างๆ หวังว่าน้องๆ จะสามารถนำความรู้ที่ได้จากบทความนี้ ไปประยุกต์ใช้ในห้องเรียนและในชีวิตประจำวันได้อย่างแท้จริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การสะท้อนเช่นเดียวกัยการที่เราไปยืนหน้ากระจก

ความหมายของการสะท้อน

การสะท้อนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีเส้นตรง l เป็นเส้นสะท้อนแต่ละจุด P บนระนาบจะมีจุด P´ เป็นภาพที่ได้จากการสะท้อนจุด P โดยที่

  1. ถ้าจุด P ไม่อยู่บนเส้นตรง l แล้วเส้นตรง l จะแบ่งครึ่งและตั้งฉากกับส่วนของเส้นตรง PP´
  2. ถ้าจุด P อยู่บนเส้นตรง l แล้วจุด P และ P´ เป็นจุดเดียวกัน

รูปสะท้อน

สมบัติการสะท้อน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการสะท้อนได้สนิทโดยต้องพลิกรูปหรือกล่าวว่ารูปต้นแบบและภาพที่ได้จากการสะท้อนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการสะท้อนของส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. ส่วนของเส้นตรงที่เชื่อมจุดแต่ละจุดบนรูปต้นแบบกับจุดที่สมนัยกันบนภาพที่ได้จากการสะท้อนจะขนานกันและไม่จำเป็นต้องยาวเท่ากัน

การหาภาพที่ได้จากการสะท้อนเมื่อกำหนดรูปต้นแบบและเส้นสะท้อนมาให้

กำหนดให้ รูปสี่เหลี่ยม ABCD เป็นรูปต้นแบบและ เส้นตรงXY เป็นเส้นสะท้อนจงหาภาพที่ได้จากการสะท้อนของรูปสี่เหลี่ยม ABCD

วิธีสร้าง

หาภาพสะท้อน

การหาเส้นสะท้อนเมื่อกำหนดรูปต้นแบบและภาพที่ได้จากการสะท้อน

กำหนดให้ สามเหลี่ยม A’B’C’ เป็นภาพที่ได้จากการสะท้อน สามเหลี่ยมABC ดังรูป

สะท้อนจากรูปต้นแบบ

 

แนวคิด การหาเส้นสะท้อนที่มีสามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการสะท้อนทำได้โดยลากส่วนของเส้นตรงเชื่อมระหว่างจุดที่สมนัยกับคู่ใดคู่หนึ่งของ สามเหลี่ยมABC และ สามเหลี่ยมA’B’C เช่น อาจจะลาก AA’ , BB’ หรือ CC’ ก็ได้

แล้วลากเส้นแบ่งครึ่งและตั้งฉากกับ AA’ จะได้เส้นสะท้อนตามต้องการดังรูป

การหาภาพจากการสะท้อนที่แกน X และแกน Y

กำหนดให้ สามเหลี่ยมABC และต้องการหาภาพจากการสะท้อนที่แกน X และสะท้อนที่แกน Y

สะท้อนจากแกม x แกน y

แนวคิด การหาภาพจากการสะท้อนที่แกน X

จากรูป สามเหลี่ยมABC มีแกน X เป็นเส้นสะท้อนจะมีจุด A’, B’ และ C’ เป็นภาพที่ได้จากการสะท้อนจุด A, B และ C ตามลำดับ ซึ่งพิกัดของจุดแต่ละคู่ที่สมนัยกันจะมีพิกัดที่หนึ่งเป็นจำนวนเดียวกันเพราะอยู่ด้านเดียวกันและห่างจากแกน Y เป็นระยะที่เท่ากันและมีพิกัดที่สองเป็นจำนวนตรงข้ามกันเพราะอยู่คนละด้านของแกน X เป็นระยะทางที่เท่ากันและภาพที่ได้มีลักษณะดังรูป

ภาพสะท้อนแกน x y

การหาพิกัดของจุด A’ , B’ และ C’ หาได้โดยพิจารณาพิกัดของ A, B, C

คือ        A (1, 3) → A ‘(1, -3)

            B (-4, -2) → B’ (-4. 2)

            C (3. -5) → C ‘(3.5)

การหาภาพจากการสะท้อนที่แกน Y

ทำได้โดยการพิจารณาพิกัดของ A’ , B’ และ C’ จากพิกัดของ A, B และ C ดังนี้

A (1, 3) → A ‘(-1, 3)

B (-4, -2) → B’ (4. -2)

C (3. -5) → C'(-3, -5)

การสะท้อน

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ขนานกับแกน X หรือขนานกับแกน Y

ถ้าเส้นสะท้อนขนานกับแกน X หรือแกน Y ให้นับช่องตารางหาระยะระหว่างจุดที่กำหนดให้กับเส้นสะท้อนซึ่งภาพของจุดนั้นจะอยู่ห่างจากเส้นสะท้อนเป็นระยะที่เท่ากันกับระยะที่นับได้เมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่น ภาพของ A ที่สะท้อนที่เส้นตรง l  เป็นภาพที่ A’

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ไม่ขนานกับแกน X และไม่ขนานกับแกน Y

ในกรณีที่เส้นสะท้อนไม่ขนานกับแกน X และแกน Y แต่เป็นเส้นในแนวทแยงให้ลากเส้นตรงผ่านจุดที่กำหนดให้และตั้งฉากกับเส้นสะท้อนภาพของจุดที่กำหนดให้จะอยู่บนเส้นตั้งฉากที่สร้างขึ้นและอยู่ห่างจากเส้นสะท้อนเป็นระยะเท่ากับจุดที่กำหนดให้อยู่ห่างจากเส้นสะท้อนเมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่นภาพของจุด A(4, 2) สะท้อนกับเส้นตรง l ได้ภาพที่ A’ ดังรูป

คลิปตัอย่างเรื่องการสะท้อน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

สำนวนไทยที่เกี่ยวกับศาสนา

สำนวนไทยที่เกี่ยวกับศาสนา ศึกษาที่มาและคุณค่าในสำนวน

  สำนวนไทยที่เกี่ยวกับศาสนา มีอยู่มากมายเลยทีเดียวค่ะ เพราะพุทธศาสนา เป็นศาสนาที่อยู่คู่บ้านคู่เมืองเรามาตั้งแต่อดีตกาล ทำให้มีความเกี่ยวโยงไปถึงสำนวน ซึ่งเป็นเหมือนถ้อยคำที่ใช้สั่งสอนและให้ข้อคิดแก่ผู้คนมายุคต่อยุค บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเรียนรู้ถึงสำนวนไทยที่เกี่ยวกับศาสนา และคุณค่าที่อยู่ในสำนวน ถ้าพร้อมแล้ว ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   สำนวนไทยที่เกี่ยวกับศาสนา   สำนวนไทยที่เกี่ยวกับศาสนา มาจากความเชื่อเรื่องศาสนาพุทธของคนไทย โดยความหมายของสำนวนจะมีทั้งสำนวนที่ยังมีเค้าของความหมายเดิม และสำนวนที่ความหมายเปลี่ยนไป   ตัวอย่างสำนวนไทยที่เกี่ยวกับศาสนา  

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

ฟังก์ชันผกผัน

ฟังก์ชันผกผัน ฟังก์ชันผกผัน หรืออินเวอร์สฟังก์ชัน เขียนแทนด้วย เมื่อ เป็นฟังก์ชัน จากที่เรารู้กันว่า ฟังก์ชันนั้นเป็นความสัมพันธ์ ดังนั้นฟังก์ชันก็สามารถหาตัวผกผันได้เช่นกัน แต่ตัวผกผันนั้นไม่จำเป็นที่จะต้องเป็นฟังก์ชันเสมอไป เพราะอะไรถึงไม่จำเป็นจะต้องเป็นฟังก์ชัน เราลองมาดูตัวอย่างกันค่ะ ให้ f = {(1, 2), (3, 2), (4, 5),(6, 5)}  จะเห็นว่า f เป็นฟังก์ชัน

ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย ความเป็นมาของลิลิตชั้นยอดของเมืองไทย

ลิลิตตะเลงพ่าย ขึ้นชื่อว่าเป็นยอดของลิลิต ที่แต่งดีที่สุด โดยบุคคลที่ได้รับการยกย่องว่าเป็นบุคคลดีเด่นทางด้านวัฒนTรรมของโลก เกริ่นมาเพียงเท่านี้น้อง ๆ ก็คงจะอยากรู้ที่มาและเรื่องของลิลิตตะเลงพ่ายมากขึ้นกว่าเดิมใช่ไหมคะ ถ้าอย่างนั้นเพื่อไม่ให้เป็นการเสียเวลา เราไปเรียนรู้วรรณคดีเรื่องสำคัญของไทยเรื่องนี้กันเลยค่ะ   ลิลิตตะเลงพ่าย ความเป็นมา   ลิลิตตะเลงพ่าย เป็นพระนิพนธ์ของสมเด็จพระมหาสมณเจ้า กรมพระปรมานุชิตชิโนรส รัตนกวีแห่งกรุงรัตนโกสินทร์ พระนามเดิมของพระองค์คือ พระองค์เจ้าวาสุกรี เป็นพระเจ้าลูกยาเธอองค์ที่ 28 ในพระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราช     สมเด็จพระมหาสมณเจ้า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1