สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย

สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม

สมบัติการสลับที่

  1. สมบัติการสลับที่สำหรับการบวก

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b = b + a

เช่น 3 + 5 = 5 + 3

จะเห็นว่า 3 + 5 = 8 และ  5 + 3 = 8

ดังนั้น ไม่ว่าสลับที่ของการบวกอย่างไร ผลลัพธ์ที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การลบ เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 1  จงหาผลบวกต่อไปนี้
1)  13 + 5 = 5 + 13 = 18
2)  2 + (-8) = (-8) + 2 = -6
3)  (-10) + 3 = 3 + (-10) = -7
4)  (-9) + (-4) = (-4) + (-9) = -13

  1. สมบัติการสลับที่สำหรับการคูณ

ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a x b = b x a

เช่น 3 x 5 =  5 x 3

จะเห็นว่า 3 x 5 = 15 และ  5 x 3 = 15

ดังนั้น ไม่ว่าสลับที่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน (ไม่มีสมบัติการสลับที่การหาร เพราะเมื่อสลับที่แล้วได้ค่าไม่เท่ากัน)

ตัวอย่างที่ 2  จงหาผลคูณต่อไปนี้
1)  5 x 4 = 4 x 5 = 20
2)  (-10) x 3 = 3 x (-10) = -30 (ลบคูณบวกได้ลบ)
3)  5 x (-8) = (-8) X 5 = -40 (บวกคูณลบได้ลบ)

4)  (-7) x (-5) = (-5) x (-7) = 35 (ลบคูณลบได้บวก)

ในทางคณิตศาสตร์ สมบัติการสลับที่ของจำนวนเต็ม คือ การเปลี่ยนแปลงตำแหน่งของจำนวนเต็ม โดยไม่ทำให้ผลลัพธ์สุดท้ายเปลี่ยนแปลง

สรุป  เครื่องหมายเหมือนกันคูณกันได้บวก  เครื่องหมายต่างกันคูณกันได้ลบ

สมบัติการเปลี่ยนหมู่

  1. สมบัติการเปลี่ยนหมู่สำหรับการบวก

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a + b) + c = a + (b + c)

เช่น (53) + 2 = 5(3 + 2)

จะเห็นว่า (53) + 2 = 10 และ   5 + (3 + 2) = 10

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการบวกอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 3  จงหาผลบวกต่อไปนี้
1)  (15 + 5) + 8 = 15 + (5 + 8) = 28
2)  [10 + (-7)] + 9 = 10 + [(-7) + 9] = 12
3)  [(-16) + 6] + 5 = (-16) + (6+5) = -5
4)  [15 + (-3)] + (-8) = 15 + [(-3) + (-8)] = 4
5)  [(-20) + (-10)] + 5 = (-20) + [(-10) + 5] = -25                                                                     

2. สมบัติการเปลี่ยนหมู่สำหรับการคูณ

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว (a x b) x c = a x (b x c)

เช่น (53) x 2 = 30 = 5(3 x 2)

จะเห็นว่า (53) x 2 = 30  และ  5 x (3 x 2) = 30

ดังนั้น ไม่ว่าจะเปลี่ยนหมู่ของการคูณอย่างไร ผลที่ได้จะมีค่าเท่ากัน

ตัวอย่างที่ 4  จงหาผลคูณต่อไปนี้
1)  (10 x 2) x 3 = 10 x (2 x 3) = 60
2)  [(-8) x 5] x 2 = (-8) x (5 x 2) = -80
3)  [4 x (-5)] x 5 = 4 x [(-5) x 5 = -100
4)  [3 x (-4)] x (-2) = 3 x [(-4) x (-2)] = 24
5)  [(-4) x (-2)] x 5=(-4) x [(-2) x 5] = 40

สมบัติการเปลี่ยนหมู่ของจำนวนสามจำนวนที่นำมาคูณกัน จะคูณจำนวนที่หนึ่งกับจำนวนที่สอง หรือคูณ
จำนวนที่สองกับจำนวนที่สามก่อน แล้วจึงคูณกับจำนวนที่เหลือ ผลคูณย่อมเท่ากัน

สมบัติการแจกแจง

ถ้า a, b และ c แทนจำนวนเต็มใดๆ แล้ว a x (b + c) = (a x b) + (a x c) และ  

( b + c) x a = (b x a) + (c x a

เช่น 2 x (53) = 16 = (2 x 5) + (2 x 3)

จะเห็นว่า 2 x (53) = 16 และ (2 x 5) + (2 x 3) = 16 

ดังนั้น สมบัติการแจกแจงจึงเป็นความสัมพันธ์ระหว่างการบวกและการคูณ

ตัวอย่างที่ 5  จงหาผลคูณต่อไปนี้
1)   2 x (5 + 7)
= (2 x 5) + (2 x 7)
= 10 + 14
= 24
2)  (-3) x (4 + 6)
= [(-3) x 4] + [(-3) × 6]
= (-12) + (-18)
= -30
3)  (-5) x [(-2) + 8)=[(-5) x (-2)] + [(-5) x 8]
= 10 + (-40)
= -30
4)  (7+3) x 5
= (7X5) + (3×5)                                                                                                                                                                           = 35 + 15                                                                                                                                                                                     = 50                                                                                                                             
5)  [(-9) + 3)] x (-3)                                                                                                                                                                    = [(-9) x (-3)] + [3 x (-3)]
= 27 + (-9)
= 18

สมบัติการแจกแจงจะเป็นการคูณแจงแจงจำนวนเข้าไปในวงเล็บ ซึ่งจะต้องคูณจำนวนทุกจำนวนที่อยู่ในวงเล็บ

สมบัติของหนึ่งและศูนย์

สมบัติของหนึ่ง

–  การคูณจำนวนใดๆ ด้วยหนึ่ง หรือหนึ่งคูณจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนนั้นเสมอ

เช่น 87 x 1 = 87

หรือ 1 x 87 = 87

ตัวอย่างที่ 6 จงหาผลลัพธ์ต่อไปนี้
1)   1 x 14 = 14
2)   (-5) x 1 = -5
3)   (-1) x 1 = -1
4)   1 x (-16) = -16
5)   27x (-1) = -27
6)   (-34) x 1 = -34

–  การหารจำนวนใดๆ ด้วยหนึ่งจะได้ผลหารเท่ากับจำนวนนั้นเสมอ

เช่น 45 ÷ 1 = 45

หรือ  \frac{45}{1}  = 45

สมบัติของศูนย์

–  การบวกจำนวนใดๆ ด้วยศูนย์ หรือการบวกศูนย์ด้วยจำนวนใดๆ จะได้ผลบวก เท่ากับจำนวนนั้นเสมอ

เช่น 87 + 0 = 87

หรือ  0 + 87  = 87

ตัวอย่างที่ 7  จงหาผลบวกต่อไปนี้
1)  12 + 0 = 12
2)  0 + (-23) = -23
3)  (-27) + 0 = -27
4)  0 + 0 = 0

–  การคูณจำนวนใดๆ ด้วยศูนย์ หรือการคูณศูนย์ด้วยจำนวนใดๆ จะได้ผลคูณเท่ากับจำนวนศูนย์ (ศูนย์คูณอะไรก็ได้ศูนย์)

เช่น 235 x 0 = 0

หรือ  0 x 235  = 0

ตัวอย่างที่ 8 จงหาผลคูณต่อไปนี้
1)  12 X 0 = 0
2)  0 x (-23) = 0
3)  (-27) × 0 = 0
4)  0 x 0 = 0

–  การหารศูนย์ด้วยจำนวนใดๆ ที่ไม่ใช่ศูนย์ จะได้ผลหารเท่ากับศูนย์

เช่น 0 ÷ 95 = 0

หรือ \frac{0}{95}  = 45

ตัวอย่างที่ 9 จงหาผลหารต่อไปนี้
1)  0 ÷ 23 = 0
2)  0 ÷ (-23) = 0

–  ถ้าผลคูณของสองจำนวนใดเท่ากับศูนย์ จำนวนใดจำนวนหนึ่งอย่างน้อยหนึ่งจำนวนต้องเท่ากับศูนย์

เช่น a x b = 0

จะได้ว่า a  = 0 หรือ b = 0

ตัวอย่างเพิ่มเติม

ตัวอย่างที่ 10 จงหาผลคูณของ (-5)(6)(-2)
วิธีทำ (-5)(6)(-2) = [(-5)x6] x (-2)
                          =(-30) x (-2)
                          = 60                                                                                                                                                                        ดังนั้น  (-5)(6)(-2) = 60

ตัวอย่างที่ 11 จงหาผลคูณของ 999 X 5
วิธีทำ 999 x 5 = (1000 – 1) x 5
                       = [1000 + (-1)] x 5
                       = (1000 x 5)+[(-1) x 5]
                       = 5000 + (-5)
                        = 4,995
ดังนั้น  999 x 5 = 4,995

จากตัวอย่างทั้งหมด น้องๆจะเห็นว่ามีสมบัติการบวกและการคูณ แต่จะไม่มีสมบัติการลบและการหาร เพราะว่า การลบจำนวนเต็มก็คือ การบวกด้วยจำนวนเต็มลบ ซึ่งเราจะเรียกว่าสมบัติการบวก ส่วนการหารจำนวนเต็มคือ การนำเศษส่วนมาคูณ เราเรียกว่าสมบัติการคูณ

เมื่อน้องได้เรียนรู้เรื่อง สมบัติของจำนวนเต็ม ซึ่งสมบัติเหล่านี้จะนำมาใช้ในการบวก ลบ คูณ และหาร จำนวนเต็ม ซึ่งน้องๆจะต้องฝึกทำโจทย์อย่างสมำ่เสมอ จึงจะทำให้น้องๆสามารถคำนวณค่าต่างๆได้อย่างรวดเร็วและเป็นระบบ

คลิปวิดีโอ สมบัติของจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี สมบัติของจำนวนเต็ม  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย สมบัติของจำนวนเต็ม และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การใช้ should ในการสร้างประโยค

การใช้ should ในการสร้างประโยค เกริ่นนำ เกริ่นใจ เคยสงสัยมั้ยว่า ชีวิตนี้ของเราควรจะต้องทำอะไรบ้าง? ภาษาอังกฤษเองก็มีอะไรแบบนี้เหมือนกันนะเอาจริง จริง ๆ ทุกภาษาก็มีเหมือนกันนะแม่ที่หากเราต้องการที่จะแนะนำว่าใครควรทำหรือชักชวนเพื่อให้รู้จักมักคุ้นกับอะไรยังไงสักอย่างอย่างมีระบบเราก็จะมีชุดคำศัพท์ที่เรา “ควร” ที่จะใช้ และนั่น!! นำมาซึ่งเนื้อหาของเราในวันนี้ อย่างเรื่อง “ควร หรือ Should” ในโลกของภาษาอังกฤษกัน แก… เราควรไปทำผมใหม่ปะ? แก… เราว่าเราควรตั้งใจเรียนแล้วปะ? แก…

ฟังเพื่อจับใจความ

วิเคราะห์ สังเคราะห์ แยกแยะ 3 วิธีที่จะช่วยให้เราฟังเพื่อจับใจความได้อย่างดี

บทนำ สวัสดีน้อง ๆ ทุกคน สำหรับเนื้อหาในบทเรียนภาษาไทยวันนี้ต้องขอบอกเลยว่าสนุก และไม่หนักจนเกินไป เพราะเป็นเรื่องของทักษะการฟังเพื่อจับใจความที่เราสามารถฝึกฝน เรียนรู้ แล้วนำไปใช้ในการเรียน หรือการใช้ชีวิตประจำวันของเราได้ โดยวันนี้เราจะมาทำความเข้าใจกันว่าการฟังเพื่อจับใจความมันคืออะไร แตกต่างไปจากการฟังแบบทั่วไปอย่างไร แล้วลักษณะของการฟังเพื่อจับใจความมีอะไรบ้าง ถ้าทุกคนพร้อมแล้วอย่ารอช้าเรามาเริ่มต้นเข้าสู่เนื้อหาในวันนี้กันเลยดีกว่า     กระบวนการในการฟังของมนุษย์ การฟังเป็นกระบวนการรับสารของมนุษย์อีกอย่างหนึ่งที่ใช้ในการสื่อสาร มนุษย์ใช้กระบวนการรับรู้เสียงต่าง ๆ ผ่านหู และใช้สมองในการแปลความหมาย ซึ่งโดยทั่วไปแล้วมนุษย์มีกระบวนการเรียนรู้อยู่หลัก ๆ  5 

โคลงโสฬสไตรยางค์

โคลงโสฬสไตรยางค์ โคลงสุภาษิตผลงานพระราชนิพนธ์ในร.5

  โคลงโสฬสไตรยางค์ เป็นโคลงสุภาษิต ผลงานพระราชนิพนธ์ของพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปทำความรู้จักกับวรรณคดีที่เปี่ยมไปด้วยคุณค่าและข้อคิดสอนใจมากมาย ถ้าอยากรู้แล้วว่ามีเนื้อหาอะไรและมีข้อคิดอย่างไรบ้าง เราก็ไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ประวัติความเป็นมา     โคลงโสฬสไตรยางค์ (พ.ศ. 2423) เป็นโคลงสุภาษิต บทพระราชนิพนธ์ในพระบาทสมเด็จเพราะจุลจอมเกล้าเจ้าอยู่หัว รัชกาลที่ 5 เดิมเป็นภาษาอังกฤษ จึงได้ทรงพระกรุณาโปรดเกล้าโปรดกระหม่อมให้กวีในพระราชสำนักแปลและประพันธ์โคลงเป็นภาษาไทย โดยพระองค์ได้ทรงตรวจแก้และทรงพระราชนิพนธ์โคลงบทนำด้วย

หลักการเบื้องต้นของอัตราส่วน

หลักการเบื้องต้นของอัตราส่วน

“อัตราส่วน คือ ปริมาณ อย่างหนึ่งที่แสดงถึง จำนวน หรือ ขนาด ตามสัดส่วนเมื่อเปรียบเทียบกับอีก ปริมาณ หนึ่งที่เกี่ยวข้องกัน ที่อาจมีได้ตั้งแต่สองปริมาณขึ้นไป”

พื้นที่ผิวทรงกรวยและลูกบาศก์

พื้นที่ผิวทรงกรวยและลูกบาศก์ การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ พื้นที่ผิวทรงกรวย ทรงกรวย คือ รูปทรงเรขาคณิต

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1