ประมาณค่าทศนิยมด้วยการปัดทิ้งและปัดทด

บทความนี้จะพูดถึงเรื่องพื้นฐานของทศนิยมอีก 1 เรื่องก็คือการประมาณค่าใกล้เคียงของทศนิยม น้อง ๆคงอาจจะเคยเรียนการประมาณค่าใกล้เคียงของจำนวนเต็มมาแล้ว การประมาณค่าทศนิยมหลักการคล้ายกับการประมาณค่าจำนวนเต็มแต่อาจจะแตกต่างกันที่คำพูดที่ใช้ เช่นจำนวนเต็มจะใช้คำว่าหลักส่วนทศนิยมจะใช้คำว่าตำแหน่ง บทความนี้จึงจะมาแนะนำหลักการประมาณค่าทศนิยมให้น้อง ๆเข้าใจ และสามารถประมาณค่าทศนิยมได้อย่างถูกต้อง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

หลักการประมาณค่าทศนิยมมีขั้นตอนดังนี้

         1.พิจารณาเลขโดดที่อยู่ข้างหลังตำแหน่งที่โจทย์ต้องการประมาณค่า เช่น  3.142857  ประมาณค่าใกล้เคียงทศนิยมให้อยู่ในรูปทศนิยม 2 ตำแหน่ง ตำแหน่งที่ 2 คือหมายเลข 4 ดังนั้นต้องพิจารณาเลขโดดที่อยู่ข้างหลังหมายเลข 4 นั่นคือเลข 2

        2.พิจารณาว่าเลขโดด อยู่ในกลุ่มใด ถ้าเลขโดดเป็น 0-4 แสดงว่าอยู่ในกลุ่มที่ต้องปัดเศษทิ้ง  ถ้าเลขโดดเป็น 5-9 แสดงว่าอยู่ในกลุ่มที่ต้องปัดเศษขึ้น หรือทด 1 ในตำแหน่งข้างหน้า

       3.เมื่อพิจารณาว่าเลขโดดอยู่ในกลุ่มใดแล้วก็จะสามารถประมาณค่าทศนิยมออกมาได้ตามตำแหน่งที่เราต้องการหลักการประมาณค่าทศนิยม

 

ปัดขึ้นปัดลง

 

ประโยชน์ของการประมาณค่าทศนิยม

          การประมาณค่าทศนิยมก็คือการปัดทศนิยมให้อยู่ในตำแหน่งที่ต้องการ มักจะใช้ในการหารทศนิยมเนื่องจากการหารทศนิยมนั้นมักจะได้คำตอบที่เป็นทศนิยมซ้ำหรือเป็นทศนิยมแบบไม่รู้จบการประมาณค่าทศนิยมจึงจะช่วยทำให้คำตอบมีตำแหน่งของทศนิยมที่สั้นลงการประมาณค่าทศนิยม

คลิปตัวอย่างเรื่องประมาณค่าทศนิยม

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

some any

การใช้ Some และ Any ตามด้วยคำนาม

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้การใช้ some และ any กันแบบเข้าใจง่ายๆ ถ้าพร้อมแล้วลองไปดูกันเลยครับ

พาราโบลา

พาราโบลา

พาราโบลา พาราโบลา คือเซตของจุดบนระนาบมีระยะห่างจากจุดโฟกัส (focus) เท่ากับระยะห่างจากเส้นไดเรกตริกซ์ (directrix) พาราโบลาที่มีจุดยอดอยู่ที่จุดกำเนิด กราฟของพาราโบลาจะมีลักษณะคล้ายระฆัง ตอนม.3 น้องๆเคยเห็นทั้งพาราโบลาหงายและคว่ำแล้ว แต่ในบทความนี้น้องๆจะได้รู้จักกับพาราโบลาตะแคงซ้ายและขวา สามารถเขียนเป็นตารางให้เข้าใจง่ายๆได้ดังนี้ ข้อสังเกต  จะเห็นว่าถ้าแกนสมมาตรคือแกน y รูปแบบสมการของพาราโบลา y จะมีเลขชี้กำลังเป็น 1  สมการเส้นไดเรกตริกซ์ก็จะเกี่ยวข้องกับ y เช่นเดียวกับแกนสมมาตรเป็นแกน x รูปแบบสมการของพาราโบลา x

โจทย์ปัญหาการคูณทศนิยม

จากบทความที่แล้วเราได้วิเคราะห์โจทย์ปัญหาการบวกและการลบทศนิยมไปแล้ว บทความนี้จึงจะเป็นการวิเคราะห์โจทย์ปัญหาที่เกี่ยวกับการคูณ รวมไปถึงการแสดงวิธีทำที่จะทำให้น้อง ๆ เข้าใจ และสามารถนำไปใช้ได้จริง

Question Tag

การใช้ Tag Questions หรือ Question Tag ในการถาม – ตอบ เกี่ยวกับประเทศและสัญชาติ

สวัสดีค่ะนักเรียนชั้นป. 6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อเรื่อง การใช้ Tag Questions หรือ Question Tag ในการถาม – ตอบ เกี่ยวกับประเทศและสัญชาติ ถ้าพร้อมแล้วก็ไปลุยกันเลย ความหมาย Question แปลว่า คำถาม ส่วนคำว่า Tag จะแปลว่า วลี ที่นำมาใช้ต่อท้ายประโยค เพื่อทำให้เป็นประโยคคำถาม ดังนั้น

สมบัติของจำนวนเต็ม

สมบัติของจำนวนเต็ม

ก่อนที่น้องๆจะได้เรียนรู้ในเรื่องสมบัติของจำนวนเต็ม น้องๆจำเป็นต้องเรียนเรื่อง การเปรียบเทียบจำนวนเต็ม และเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์  ซึ่งบทความนี้ได้รวบรวมสมบัติของจำนวนเต็ม ประกอบด้วย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม ได้แก่ สมบัติการสลับที่ สมบัติการเปลี่ยนหมู่ และสมบัติการแจกแจง  รวมไปถึงสมบัติของหนึ่งและศูนย์ เรามาศึกษาสมบัติแรกกันเลย สมบัติเกี่ยวกับการบวกและคูณจำนวนเต็ม สมบัติการสลับที่ สมบัติการสลับที่สำหรับการบวก ถ้า a และ b แทนจำนวนเต็มใดๆ แล้ว a + b =

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1