สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ

สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใด ๆ                                        อาศัยสมบัติสมมาตรในการเขียนสมการแสดงความเท่ากันของจำนวนได้ 2 แบบ ดังตัวอย่างต่อไปนี้                        1.   a = 2 หรือ 2 = a
2.   a + b = c หรือ c = a + b
3.  -8x =-2 หรือ -2 = -8x
4.  4x + 1 = x – 2 หรือ x – 2 = 4x + 1
5.  x = y หรือ y = x                                                                                      

สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ
อาศัยสมบัติการถ่ายทอดในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.   ถ้า m = n และ n = 8 แล้วจะสรุปได้ว่า m = 8
2.   ถ้า x = 9 + 5 และ 9 + 5 = 14 แล้วจะสรุปได้ว่า x = 14
3.   ถ้า x = -7y และ -7y = 1.5 แล้วจะสรุปได้ว่า x = 1.5
4.   ถ้า y = 3x + 2 และ 3x + 2 = 5 แล้วจะสรุปได้ว่า y = 5
5.   ถ้า Z = p x N และ p x N = k แล้วจะสรุปได้ว่า Z = k

สมบัติการบวก

ถ้ามีจำนวนสองจำนวนที่เท่ากันอยู่แล้วเมื่อบวกจำนวนทั้งสองด้วยจำนวนที่เท่ากันแล้วผลลัพธ์จะเท่ากัน 

ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                      

อาศัยสมบัติการบวกในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า 5 x 2 = 10 แล้ว (5×2) + (-3) = 10 + (-3)
2.  ถ้า a = 8 แล้ว a + 2 = 8 + 2
3.  ถ้า x + 3 = 12 แล้ว (x + 3) + (-3) = 12 + (-3)
4.  ถ้า m = n แล้ว m + p = n + p เมื่อ p แทนจำนวนจริงใด ๆ
5.  ถ้า x + 0.5 = 9 แล้ว (x + 0.5) + (-1) = 9 + (-1)

จำนวนที่นำมาบวกกับแต่ละจำนวนที่เท่ากันนั้น  อาจจะเป็นจำนวนบวกหรือจำนวนลบก็ได้ ในกรณีที่บวกด้วยจำนวนลบมีความหมายเหมือนกับนำจำนวนลบออกจากจำนวนทั้งสองข้างของสมการ คือ   

ถ้า a = b แล้ว a +(- c) = b +(- c) หรือ a – c = b – c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

นั่นคือ ถ้า a = b แล้ว a – c = b – c  เมื่อ a, b และ c แทนจำนวนจริงใดๆ

สมบัติการคูณ

ถ้ามีจำนวนสองจำนวนที่เท่ากัน เมื่อนำจำนวนอีกจำนวนหนึ่งมาคูณจำนวนทั้งสองนั้นแล้วผลลัพธ์จะเท่ากัน       

ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                                 

อาศัยสมบัติการคูณในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า x = y แล้ว 5x = 5y
2.  ถ้า m + 2 = 3n แล้ว 4(m + 2) = 4(3n)
3.  ถ้า -8x = 16 แล้ว (-8x)(5) = 16(5)
4.  ถ้า z = t แล้ว -3z = -3t
5.  ถ้า a = 2c แล้ว a(-4) = 2c(-4)
จำนวนที่นำมาคูณกับจำนวนสองจำนวนที่เท่ากันนั้น อาจจะเป็นจำนวนเต็มหรือเป็นเศษส่วนก็ได้ เช่น

ถ้า x = y  แล้ว  \frac{1}{4}x=\frac{1}{4}y  หรือ  \frac{x}{4}=\frac{y}{4}

และถ้า a = b, c ≠ 0  แล้ว \frac{1}{c}\times a=\frac{1}{c}\times b   หรือ \frac{a}{c}\times \frac{b}{c}

นั่นคือ ถ้า a = b แล้ว \frac{a}{c}=\frac{b}{c}  เมื่อ a,b และ c แทนจำนวนจริงใด ๆ ที่ c ≠ 0

ฝึกทำโจทย์

ให้บอกสมบัติของการเท่ากันในการแก้สมการต่อไปนี้

         1)  ถ้า x = 5  แล้ว  5  = x

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         2)  ถ้า 4x = 12 แล้ว 12 = 4x

      สมบัติของการเท่ากันที่ใช้  คือ สมบัติสมมาตร

         3)  ถ้า  x = 4a และ 4a  = 8  แล้ว x = 8     

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         4)  ถ้า x – 9 = 13 แล้ว  x – 9 + 8  = 13 + 8

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         5)  ถ้า 3x + 5  = b และ  b  = 20  แล้ว 3x + 5  = 20        

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         6)  ถ้า  x + 1  = 6  แล้ว 2(x + 1)  = 2(6)

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

         7)  ถ้า  6x – 2  = 8  แล้ว  6x – 2 + 2  = 8 + 2

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         8)  ถ้า  5 (x – 6)  = y + 2 และ y + 2  = 25  แล้ว  5 (x – 6)  = 25

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         9)  ถ้า  \frac{4x+10}{5}=\frac{x-6}{3}   แล้ว  \frac{x-6}{3}=\frac{4x+10}{5}          

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         10)  ถ้า  7x = 49  แล้ว 7x \times \frac{1}{7}  = 49 \times \frac{1}{7}

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

สรุป สมบัติของการเท่ากัน

สมบัติสมมาตร : ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำานวุ่นจริงใด ๆ

สมบัติถ่ายทอด : ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการบวก : ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการคูณ : ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

เมื่อน้องๆเรียนรู้เรื่อง สมบัติของการเท่ากัน ทำให้สามารถนำความรู้ที่ได้ไปใช้ในการหาคำตอบของสมการ ซึ่งสามารถนำ สมบัติการเท่ากันมาใช้ในการแก้สมการ ได้รวดเร็วยิ่งขึ้น  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแก้สมการเชิงเส้นตัวแปรเดียว ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแก้สมการได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ สมบัติของการเท่ากัน

        คลิปวิดีโอนี้ได้รวบรวม สมบัติของการเท่ากัน ซึ่งประกอบด้วย สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

เทคนิคการใช้ Yes, No Questions M.1

เทคนิคการใช้ Yes, No Questions ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียน ม.  1 ที่น่ารักทุกคนวันนี้ครูจะพาไปดูเทคนิคและวิธีการอย่างง่ายในการใช้ประโยค Yes/No questions กันค่ะไปลุยกันเลยค่า Yes, No Questions คืออะไร คือ ประโยคคำถามที่ต้องการคำตอบรับ (Yes) หรือปฏิเสธ (No) เป็นการถามที่ผู้ถามอาจจะมีข้อมูลอยู่บ้างว่า ว่าจะเป็นอย่างนั้นอย่างนี้ หรือผู้ถามอาจจะถามเพื่อให้มั่นใจว่าเป็นจริงตามที่เข้าใจหรือเปล่า ในที่นี้ครูจึงแยกออกเป็น 3 ชนิดค่ะ คือ ประโยคคำถามที่ขึ้นต้นด้วย

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

การเขียนคำอวยพร

การเขียนคำอวยพร เขียนอย่างไรให้เหมาะสมกับผู้รับ

  วัฒนธรรมเป็นส่วนหนึ่งของสังคม และภาษาก็เป็นส่วนหนึ่งของวัฒนธรรม คนเราทุกคนต่างต้องการในสิ่งดีงาม เมื่อถึงโอกาสสำคัญอย่างวันเกิด วันแต่งงาน วันขึ้นบ้านใหม่ จึงต้องการคำอวยพรที่สร้างกำลังใจ และเป็นสิริมงคลแก่ตัวเอง คำอวยพรจึงเป็นเหมือนสิ่งสะท้อนวัฒนธรรม ที่คนใช้สื่อสาร ถ่ายทอดเพื่อมอบสิ่งดี ๆ ให้แก่กัน บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เกี่ยวกับ การเขียนคำอวยพร เราไปดูพร้อมกันเลยค่ะว่าการเขียนประเภทนี้จะมีลักษณะและวิธีอย่างไรบ้าง   การเขียนคำอวยพร   ความหมายของคำอวยพร คำอวยพร

ตัวประกอบของจำนวนนับ

ตัวประกอบของจำนวนนับ ป.6

บทความนี้จะให้ความรู้เกี่ยวกับตัวประกอบของจำนวนนับ น้องๆชั้นป.6 จะได้เรียนรู้เกี่ยวกับความหมายของตัวประกอบ รวมไปถึงวิธีหาตัวประกอบของจำนวนนับนั่นเอง

E6 This, That, These, Those

This, That, These, Those

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนเรื่อง This, That, These, Those กันค่ะ พร้อมแล้วก็ไปลุยกันเลยจ้า   เข้าสู่บทเรียน   ก่อนที่นักเรียนจะไปเรียนเรื่อง การใช้  This, That, These, Those ครูอยากจะให้ลองดูตัวอย่างของการใช้ This, That, These, Those (Determiners) และ This,

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1