แบบฝึกหัดความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

แบบฝึกหัดความสัมพันธ์

แบบฝึกหัดความสัมพันธ์ เป็นการทบทวนเนื้อหาเกี่ยวกับความสัมพันธ์ ได้แก่ เรื่องโดเมนและเรนจ์ของความสัม กราฟของความสัมพันธ์ และตัวผกผันของความสัมพันธ์

ก่อนทำแบบฝึกหัดความสัมพันธ์ บทความที่น้องๆควรรู้ คือ

  1. โดเมนของความสัมพันธ์
  2. เรนจ์ของความสัมพันธ์
  3. กราฟของความสัมพันธ์
  4. ตัวผกผันของความสัมพันธ์

 

แบบฝึกหัด

1.) ถ้า (x, 5) = (3, x – y) แล้ว 3x – y มีค่าเท่าใด

วิธีทำ หาค่า x และ y เพื่อนำมาแทนค่าในสมการ 3x – y

เนื่องจาก (x, 5) = (3, x – y) ได้ว่า สมาชิกตัวหน้าของคู่อันดับทั้งสองต้องเม่ากัน และ สมาชิกตัวหลังของคู่อันดับทั้งสองต้องเท่ากัน

นั่นคือ x = 3 และ 5 = x – y

ต้องการหา y 

พิจารณา 5 = x- y  เนื่องจากเรารู้ว่า x = 3

เมื่อแทน x = 3 ในสมการ 5 = x- y จะได้ 5 = 3 – y แก้สมการจะได้ y = 3 – 5 = -2

ดังนั้น x = 3 และ y = -2

ตอนนี้เราได้ค่า x และ y มาแล้ว ดังนั้นสามารถแทน ค่า x, y ในสมการ 3x – y จะได้ดังนี้

3x – y = 3(3) – (-2) = 9 + 2 = 11

 

2.) ให้ B เป็นเซตของจำนวนเต็ม และ A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} และ r = {(x, y) ∈ A × B : 2y = x}ให้ยกตัวอย่างสมาชิกคู่อันดับในความสัมพันธ์ r

วิธีทำ จาก B เป็นเซตของจำนวนเต็ม จะได้ว่า B = {…, -3, -2, -1, 0, 1, 2, …}

และจาก A = {x : x เป็นจำนวนเต็มบวกที่น้อยกว่า 5} จะได้ว่า A = {1, 2, 3, 4}

จากโจทย์ r = {(x, y) ∈ A × B : 2y = x}

A × B หมายความว่า คู่อันดับจะมีสมาชิกตัวหน้าที่มาจาก A และสมาชิกตัวหลังมาจาก B

จาก A = {1, 2, 3, 4} แสดงว่า x (สมาชิกตัวหน้า) ที่เป็นไปได้คือ 1, 2, 3, 4

และจาก B เป็นเซตของจำนวนเต็ม แสดงว่า y (สมาชิกตัวหลัง) จะต้องเป็นจำนวนเต็ม

หาคู่อันดับในความสัมพันธ์ r ที่สอดคล้องกับเงื่อนไข 2y = x

แทน x ที่เป็นไปได้ในสมการ 2y = x

ที่ x = 1 ;  2y = 1 >>  y = \frac{1}{2}   จะเห็นว่า y ∉ B ดังนั้น (1, \frac{1}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 2 ; 2y = 2 >> y = 1 ซึ่ง (2, 1) ∈ A × B ดังนั้น (2, 1) เป็นคู่อันดับในความสัมพันธ์ r

x = 3 ; 2y = 3 >> y = \frac{3}{2} จะเห็นว่า (3, \frac{3}{2}) ∉ A × B ดังนั้น (3, \frac{3}{2}) ไม่เป็นคู่อันดับในความสัมพันธ์ r

x = 4 ; 2y = 4 >> y = 2 ซึ่ง (4, 2) ∈ A × B ดังนั้น (4, 2) เป็นคู่อันดับในความสัมพันธ์ r

ดังนั้น r = {(2, 1), (4, 2)}

 

3.) r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : \sqrt{x}+\sqrt{y+1}=2} ให้หาโดเมนและเรนจ์ของความสัมพันธ์ r

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

4.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : x + y = 1} จงหา r^{-1}

วิธีทำ 

แบบฝึกหัดความสัมพันธ์

 

วิดีโอแบบฝึกหัดความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

วิธีเขียน คำขวัญ ให้ถูกใจคนอ่าน

น้อง ๆ หลายคนคงจะคุ้นเคยกับคำขวัญกันเป็นอย่างนี้ เพราะในวันสำคัญต่าง ๆ อย่างวันเด็ก นายกรัฐมนตรีของประเทศในแต่ละสมัยก็จะให้คำขวัญแก่เด็ก ๆ ทุกปี แต่ทราบหรือไม่คะว่า คำขวัญ นั้นคืออะไรกันแน่ มีจุดมุ่งหมาย ลักษณะ และวิธีการเขียนอย่างไร บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้เรื่องราวทั้งหมดนั้นของคำขวัญ ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำขวัญ คืออะไร   คำขวัญ คือ

ตัวอย่างโจทย์ปัญหาสัดส่วน

บทความนี้เราจะได้เรียนรู้วิธีการในการหาค่าตัวแปรในการใช้สัดส่วน สามารถมารถนำไปประยุกต์ใช้กับการแก้โจทย์ปัญหาในชีวิตจริงได้ พิจารณาสิ่งที่ต้องการแสดงการเปรียบเทียบโดยการเขียนเป็นอัตราส่วนสองอัตราส่วนอย่างเป็นลำดับและหาค่าของตัวแปรได้

การใช้ going to / will ในการสร้างประโยค

การใช้ going to / will ในการสร้างประโยค เกริ่นนำเกริ่นใจ   ภาพใหญ่ของ Will และ Be going to การจะเข้าใจอะไรได้อย่างมั่นใจและคล่องตามากขึ้น เราในฐานะผู้เรียนรู้ควรที่จะต้องเห็นภาพรวมทั้งหมดก่อน โดย Will เนี่ย อยู่ในตระกูล Auxiliary verb หรือ Helping verb

เรขาคณิตสามมิติ

เรขาคณิตสามมิติ

ในบทความนี้เราจะได้เรียนรู้กับรูปเรขาคณิตสามมิติและส่วนประกอบต่างๆ เพื่อนำไปประยุกต์ใช้ในชีวิตประจำวันได้อย่างถูกต้อง

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1