อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

อัตราส่วนของจำนวนหลายๆจำนวน

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย ซึ่งก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง อัตราส่วนที่เท่ากัน โดยการที่จะหาอัตราส่วนของจำนวนหลายๆจำนวนหรือเรียกอีกอย่างว่า อัตราส่วนต่อเนื่อง ได้นั้น น้องๆ จำเป็นต้องหา ค.ร.น. ของตัวร่วม ดังนั้นเรามาทบทวนวิธีการหา ค.ร.น. กันก่อนนะคะ

จงหา ค.ร.น. ของ 3, 6 และ 12

3) 3      6        12

2) 1      2          4

    1        1          2

ดังนั้น ค.ร.น. ของ 3, 6 และ 12 คือ 3 x 2 x 1 x 1 x 2 = 12


กำหนดอัตราส่วนสองอัตราส่วนที่ต่อเนื่องกัน ดังนี้

อายุของ a ต่ออายุของ b เป็น 4 : 3

และ อายุของ b ต่ออายุของ c เป็น 3 : 5

         นอกจากการเขียนอัตราส่วนแสดงการเปรียบเทียบอายุของ a, b และ c ทีละคู่แล้ว เรายังสามารถเขียนอัตราส่วนแสดงการเปรียบเทียบอายุของ a, b และ c ได้ดังนี้

         อายุของ a ต่ออายุของ b ต่ออายุของ c เป็น  4 : 3 : 5

อัตราส่วนเช่นนี้เรียกว่า อัตราส่วนของจำนวนหลายๆ จำนวน


         ถ้าเรามีอัตราส่วนของจำนวนหลายๆ จำนวน เราสามารถเขียนอัตราส่วนของจำนวนทีละสองจำนวน จากอัตราส่วนนั้นได้ ดังนี้

นมสดยูเอชทีกล่องหนึ่งมีอัตราส่วนของคอเลสเตอรอลต่อโปรตีนต่อโชเดียมโดยน้ำหนัก  เป็น  3 : 10 : 13       

จากอัตราส่วนของสารอาหารในนมสดยูเอชที เราอาจเขียนอัตราส่วนแสดงความสัมพันธ์ระหว่างปริมาณสองปริมาณได้เช่น 

          อัตราส่วนของคอเลสเตอรอลต่อโปรตีนโดยน้ำหนัก เป็น 3 : 10   

          อัตราส่วนของโปรตีนต่อโชเดียมโดยน้ำหนัก เป็น 10 : 13       

          อัตราส่วนของคอเลสเตอรอลต่อโชเดียมโดยน้ำหนัก เป็น 3 : 13     


ตัวอย่าง อัตราส่วนของจำนวนหลายๆจำนวน

สามารถศึกษาอัตราส่วนของจำนวนหลายๆ จำนวน ที่มีการเปรียบเทียบกันเป็นคู่ ๆ ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 1  ถ้า a : b = 3 : 2 และ b : c = 2 : 5  จงเขียนอัตราส่วนของ a : b : c  เท่ากับเท่าไร

วิธีทำ   จากโจทย์ a : b = 3 : 2

   และ         b : c = 2 : 5       

   เนื่องจาก b เป็นตัวร่วมและมีค่าเท่ากันคือ 2                                      

ดังนั้น อัตราส่วนของ a : b : c = 3 : 2 : 5

(ถ้าตัวร่วมมีค่าเท่ากัน ให้เขียนอัตราส่วนของจำนวนหลายๆจำนวน ได้เลย)

ตัวอย่างที่ 2   ถ้า a : b = 7 : 5  และ b : c = 20 : 12  จงเขียนอัตราส่วนของ a : b : c  เท่ากับเท่าไร

วิธีทำ   จากโจทย์ a : b7 : 5

   และ b : c = 20 : 12                           

   เนื่องจาก b เป็นตัวร่วมแต่มีค่าไม่เท่ากันคือมีค่าเป็น 5 และ 20

   ค.ร.น. ของ 5 และ 20 คือ 20                                      

   จะได้ a : b = 7 x 4 : 5 x 4 = 28 : 20                               

   และจาก b : c = 20 : 12                                                      

ดังนั้น อัตราส่วนของ a : b : c = 28 : 20 : 12

(ถ้าตัวร่วมมีค่าไม่เท่ากัน ให้หา ค.ร.น. ของตัวร่วมก่อน แล้วคูณอัตราส่วนของแต่ละอัตราส่วนขึ้นใหม่โดยมีตัวร่วมเท่ากัน แล้วเขียนอัตราส่วนของจำนวนหลายๆจำนวน) เช่น ในตัวอย่างที 2 ตัวร่วมคือ b มีค่าไม่เท่ากัน คือ 5 และ 20 จึงต้องหา ค.ร.น. ของ 5 และ 20 ได้เท่ากับ 20 แล้วคูณตัวร่วมให้เท่ากับ 20

สรุปวิธีการหาอัตราส่วนของจำนวนหรืออัตราส่วนต่อเนื่อง มีวิธีการดังนี้

          1)  ให้พิจารณาโจทย์หาตัวร่วม 

          2)  ถ้าจำนวนที่เป็นตัวร่วมในข้อที่ 1) เท่ากัน ให้เขียนอัตราส่วนต่อเนื่องได้เลย (เหมือนตัวอย่างที่ 1)

          3)  ถ้าจำนวนที่เป็นตัวร่วมในข้อ 1) ไม่เท่ากัน ต้องทำตัวร่วมให้เท่ากันโดยการหา ค.ร.น. ของจำนวนที่เป็นตัวร่วม (เหมือนตัวอย่างที่ 2)

          4) คูณอัตราส่วนของแต่ละอัตราส่วนขึ้นใหม่โดยมีตัวร่วมเท่ากัน

          5) เขียนเป็นอัตราส่วนของจำนวนหลายๆ จำนวน

          อัตราส่วนของจำนวนหลาย ๆ จำนวน  a : b : c  สามารถเขียนอัตราส่วนของจำนวน ทีละสองจำนวนได้เป็น  a : b  และ  b : c  เมื่อ  m  แทนจำนวนบวกใด ๆ 

จะได้ว่า     a : b  =  am : bm

และ           b : c  =  bm : cm

ดังนั้น   a : b : c  =  am : bm : cm    เมื่อ m  แทนจำนวนบวก

ถ้ามีอัตราส่วนของจำนวนที่มากกว่าสามจำนวนก็สามารถใช้หลักการเดียวกันนี้  เช่น

a : b : c : d  =  am : bm : cm : dm   เมื่อ m  แทนจำนวนบวก

ตัวอย่างที่ 3  ในการผสมคอนกรีต  อัตราส่วนของปูนต่อทรายโดยน้ำหนัก  เป็น  1 : 2  และ  อัตราส่วนของทรายต่อหินโดยน้ำหนัก  เป็น  3 : 2  ถ้าใช้ปูน  24  ตัน  จะต้องใช้ทรายและหินอย่างละกี่ตัน

วิธีทำ         อัตราส่วนของปูนต่อทรายโดยน้ำหนัก    เป็น  1 : 2 

อัตราส่วนของทรายต่อหินโดยน้ำหนัก    เป็น  3 : 2 

ค.ร.น. ของ 2 และ 3 คือ 6 

จะได้  อัตราส่วนของปูนต่อทรายโดยน้ำหนัก  เป็น  1 x 3 : 2 x 3 =  3 : 6

และ  อัตราส่วนของทรายต่อหินโดยน้ำหนัก  เป็น    3 x 2 : 2 x 2 =  6 : 4

ดังนั้น  ถ้าใช้ปูน  24  ตัน อัตราส่วนของปูนต่อทรายต่อหินโดยน้ำหนัก  เป็น

   3 : 6 : 4 = 3 x 8 : 6 x 8 : 4 x 8

                                                 = 24 : 48 : 32

นั่นคือ  จะต้องใช้ทราย  48  ตัน  และหิน  32  ตัน

ตัวอย่างที่ 4  อัตราส่วนของความยาวของด้านทั้งสามของรูปสามเหลี่ยมรูปหนึ่งเป็น 3 : 4 : 5 ถ้ารูปสามเหลี่ยมรูปนี้มีความยาวรอบรูปเป็น 36 เซนติเมตร จงหาความยาวแต่ละด้านของรูปสามเหลี่ยมนี้

วิธีทำ      เนื่องจาก อัตราส่วนของความยาวของด้านทั้งสามเป็น 3 : 4 : 5

จะได้ความยาวรอบรูปเป็น 3 + 4 + 5 = 12

ดังนั้นอัตราส่วนของความยาวของด้านทั้งสามต่อความยาวรอบรูปเป็น 3 : 4 : 5 : 12

ถ้าสามเหลี่ยมรูปนี้มีความยาวรอบรูปเป็น 36 เซนติเมตร แสดงว่า 

3 : 4 : 5 : 12 =  3 x 3 : 4 x 3 : 5 x 3 : 12 x 3

                    = 9 : 12 : 15 : 36   

ดังนั้น ความยาวแต่ละด้านของรูปสามเหลี่ยมเป็น 9, 12, 15  และ 36 เซนติเมตรตามลำดับ

ตัวอย่างที่ 5  อัตราส่วนการมีเงินของน้ำหวานต่อน้ำตาล เป็น และอัตราส่วนการมีเงินของน้ำตาลต่อน้ำอ้อยเป็น ให้นักเรียนเปรียบเทียบอัตราส่วนการมีเงินของคนทั้งสาม

วิธีทำ   

                                           น้ำหวาน  :           น้ำตาล :            น้ำอ้อย

อัตราส่วนแรก                           3      :              4        

อัตราส่วนที่สอง                                                2           :              5

นำ 2 คูณอัตราส่วนที่สอง                                   4           :             10

อัตราส่วนต่อเนื่อง                     3      :               4           :             10                                 

 ตอบ   อัตราส่วนการมีเงินของน้ำหวานต่อน้ำตาลต่อน้ำอ้อย คือ  3 : 4 : 10

ตัวอย่างที่ 6  หอประชุมแห่งหนึ่งมีอัตราส่วนของความกว้างต่อความยาวเป็น  5 : 8   และความสูงต่อความยาวเป็น  3 : 12  จงเขียนอัตราส่วนของความกว้างต่อความยาวต่อความสูงและอัตราส่วนของความกว้างต่อความสูงของหอประชุมนี้

วิธีทำ

              อัตราส่วนของความกว้างต่อความยาว เป็น    5 : 8  

              อัตราส่วนของความสูงต่อความยาว เป็น    3 : 12 

              นั่นคือ  อัตราส่วนของความยาวต่อความสูง เป็น  12 : 3

              จะได้  อัตราส่วนความกว้างต่อความยาว  เป็น  5 : 8  = 5 x 3 : 8 x 3 =  15 : 24

              อัตราส่วนความยาวต่อความสูง  เป็น  12 : 3  = 12 x 2 : 3 x 2 =  24 : 6

              ดังนั้น    อัตราส่วนความกว้างต่อความยาวต่อความสูง  เป็น  15 : 24 : 6

                          อัตราส่วนความกว้างต่อความสูง  เป็น  15 : 6

              ตอบ     อัตราส่วนความกว้างต่อความยาวต่อความสูง  เป็น  15 : 24 : 6

                          อัตราส่วนความกว้างต่อความสูง  เป็น  15 : 6

สรุป

           เมื่อมีอัตราส่วนสองอัตราส่วนใด  ๆ  ที่แสดงการเปรียบเทียบปริมาณของสิ่งสามสิ่งเป็นคู่ ๆ เราสามารถเขียนอัตราส่วนของจำนวนทั้งสามจำนวนจากสองอัตราส่วนเหล่านั้น  ด้วยการทำปริมาณของสิ่งที่เป็นตัวร่วมในสองอัตราส่วนให้เป็นปริมาณที่เท่ากัน  โดยใช้หลักการหาอัตราส่วนที่เท่ากัน 

คลิปวิดีโอ อัตราส่วนของจำนวนหลายๆจำนวน

        คลิปวิดีโอนี้ได้รวบรวมวิธีการหา อัตราส่วนของจำนวนหลายๆจำนวน ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

01NokAcademy_Question Tag Profile

การใช้โครงสร้างประโยค Question Tags (ปัจจุบัน)

สวัสดีค่ะนักเรียนชั้นป. 6 ที่น่ารักทุกคนวันนี้เราจะไปเรียนรู้ในหัวข้อเรื่อง การใช้โครงสร้างประโยค Question Tags ในรูปแบบปัจจุบัน โดยที่เราจะเจอกลุ่มประโยคในลักษณะนี้ร่วมกับรูปแบบโครงสร้างประโยคและกริยาที่เป็นปัจจุบัน (V. 1 and Present form) พร้อมแล้วก็ไปลุยกันเลยค่า ความหมายของ Question Tags   Question แปลว่า คำถาม ส่วนคำว่า Tag จะแปลว่า วลี

ศึกษาตัวบทและคุณค่า คัมภีร์ฉันทศาสตร์ แพทยศาสตร์สงเคราะห์

จากบทเรียนครั้งที่แล้วที่เราได้เรียนรู้เกี่ยวความเป็นมาและเนื้อหาโดยสังเขปของ คัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์ กันไปแล้ว เราได้รู้ถึงที่มาความเป็นไปของวรรณคดีที่เป็นตำราแพทย์ในอดีตรวมถึงเนื้อหา ฉะนั้นบทเรียนในวันนี้จะพาน้อง ๆ ไปเจาะลึกเกี่ยวกับตัวบทเพื่อให้รู้จักกับวรรณคดีเรื่องนี้กันมากขึ้น ว่าเหตุใดจึงเป็นตำราแพทย์ที่ได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   ตัวบทเด่น ๆ ในคัมภีร์ฉันทศาสตร์ แพทย์ศาสตร์สงเคราะห์     ถอดความ เปรียบร่างกายของหญิงและชายเป็นกายนคร จิตใจเปรียบเหมือนกษัตริย์ซึ่งเป็นผู้ครอบครองสมบัติอันยิ่งใหญ่หรือก็คือร่างกาย ข้าศึกเปรียบได้กับโรคที่ทำลายร่างกายเรา พทย์เปรียบได้กับทหาร มีความชำนาญ เวลาที่ข้าศึกมาหรือเกิดโรคภัยขึ้นก็อย่างวางใจ แผ่ลามไปทุกแห่ง

ศึกษาตัวบทโคลนติดล้อ ตอน ความนิยมเป็นเสมียน

โคลนติดล้อ เป็นบทความแสดงความคิดเห็นของพระบาทสมเด็จพระมงกุฎมีเนื้อหาเกี่ยวกับการเมือง การปลุกใจคนไทยให้รักชาติ และมีทั้งฉบับภาษาไทยและฉบับแปลเป็นภาษาอังกฤษ แค่นี้ก็น่าสนใจแล้วใช่ไหมคะ แต่ความดีเด่นของหนังสือเล่มนี้ยังมีอีกมาก บทเรียนในวันนี้จะพาน้อง ๆ ไปเรียนรู้ตัวบทที่สำคัญและคุณค่าของบทความที่ 4 ในเรื่องโคลนติดล้อตอน ความนิยมเป็นเสมียน พร้อม ๆ กันเลยค่ะ   บทเด่นใน โคลนติดล้อ ตอน ความนิยมเป็นเสมียน   บทนี้พูดถึงความนิยมในการเป็นเสมียนของหนุ่มสาวในยุคนั้นที่สนใจงานเสมียนมากกว่าการกลับไปช่วยทำการเกษตรที่บ้านเกิดเพราะเห็นว่าเสียเวลา คิดว่าตัวเองเป็นผู้ได้รับการศึกษาสูง จึงไม่สมควรที่จะไปทำงานที่คนไม่รู้หนังสือก็ทำได้  

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1