อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ
อสมการ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

อสมการ

อสมการ คือการไม่เท่ากัน ซึ่งการไม่เท่ากันนั้น สามารถเป็นไปได้ทั้ง มากกว่า, น้อยกว่า , มากกว่าหรือเท่ากับ และน้อยกว่าหรือเท่ากับ เนื้อหาในบทความนี้จะเกี่ยวข้องกับเรื่องช่วงของจำนวนจริงด้วย น้องๆสามารถดูบทความเรื่องช่วงของจำนวนจริงเพิ่มเติมได้ที่ >>>ช่วงของจำนวนจริง<<<

การแก้อสมการจะทำคล้ายๆกับสมการ มีเป้าหมายเดียวกันก็คือ หาค่าตัวแปรตัวแปรหนึ่งสมมติให้เป็น x แต่คำตอบจะต่างกับสมการ การแก้สมการหาค่า x เราจะได้ค่า x มา โดยระบุชัดเจนเลยว่า x มีค่าเท่ากับเท่านี้ แต่สำหรับอสมการคำตอบจะเป็นช่วง เช่น แก้อสมการแล้วได้คำตอบว่า x > 3 แสดงว่า x ที่มากกว่า 3 นั้นเป็นคำตอบของอสมการทั้งหมดเลย

สมบัติที่ควรรู้ของอสมการ

ให้ a, b เป็นจำนวนจริงใดๆ

1.) ถ้า a > b แล้ว -a < -b

คำอธิบายเพิ่มเติม ถ้า เรามีจำนวนจริงที่ 2 ตัว ที่ไม่เท่ากัน เมื่อคูณด้วยจำนวนจริงลบเข้าไปทั้งสองฝั่งของอสมการ จะทำให้เครื่องหมายของอสมการเปลี่ยนไป

ตัวอย่าง  2 < 3  สมมติคูณด้วย -3 ทั้งสองข้างของอสมการ จะได้ว่า 2(-3) > 3(-3)  ⇒ -6 > -9

เห็นได้ชัดเลยว่า เมื่อคูณลบไปแล้ว เครื่องหมายจะเปลี่ยน

 

ตัวอย่างการแก้อสมการ

 

1.) จงหาค่า x เมื่อ x + 5 > 2x -2  พร้อมกับวาดเส้นจำนวน

อสมการ

2.) จงหาค่า x เมื่อ x² -3 > 1 พร้อมกับวาดเส้นจำนวน

กรณีที่มีสองวงเล็บที่มากกว่า 0

เราจะเห็นว่าเส้นจำนวนแบ่งออกเป็น 3 ช่วง ถ้าเจอแบบนี้ให้น้องๆ

1.)ทดเครื่องหมายบวกไว้ที่ช่องขวาสุด ช่องถัดไปเป็นลบสลับแบบนี้ไปเรื่อยๆ (เริ่มจากขวาเสมอ) 

2.)พิจารณาเครื่องหมายของอสมการ จะเห็นว่าเป็นเครื่องหมายมากกว่า ดังนั้น ต้องลากเส้นไปทางเครื่องหมายบวกดังรูป

กลับกันถ้าเป็นกรณีน้อยกว่าให้ลากเส้นไปทางเครื่องหมายลบ ดังรูปในข้อ 4

3.) นำค่า x ของทั้งสองช่วงมา ยูเนียนกัน 

 

3.) จงหาค่า x เมื่อ x² + 3x – 18 ≥ 0 พร้อมกับวาดเส้นจำนวน

4.) (O-Net) กำหนดให้ I แทนเซตของจำนวนเต็ม และ A = {x : x ∈ I และ  2x² – 3x – 14 ≤ 0}

ผลรวมของสมาชิกในเซต A เท่ากับเท่าใด

อสมการ

 

 

วีดิโอ อสมการ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Suggesting Profile

สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ

สวัสดีค่ะนักเรียนชั้นม. 4 ที่น่ารักทุกคน วันนี้ครูจะพาไปตะลุย “สำนวนการเสนอ การขออนุญาต และขอความช่วยเหลือ พร้อมทั้งเทคนิคการพูดตอบรับและปฏิเสธการให้ความช่วยเหลือในสถานการณ์ต่างๆ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า สำนวนการเสนอ   ในชีวิตประจำวันของเรานั้น ล้วนจะต้องเจอกลุ่มประโยคคำถามในเชิงชักชวน และการเสนอแนะที่ใช้เป็นรูปแบบคำถามนั้นถือเป็นการเสนอแนะชักชวนทางอ้อม ถ้าเทียบกับนิสัยคนไทยแล้ว ก็เพื่อแสดงถึงความเกรงใจ ไม่พูดมาตรงๆ เพื่อจุดประสงคืบางอย่าง ซึ่งเป็นนิสัยที่คนไทยส่วนใหญ่มีอยู่แล้ว ในภาษาอังกฤษการใช้ภาษาเหล่านี้จะทำให้การสนทนาดูเป็นธรรมชาติและคล่องมากขึ้น โดยที่บางครั้งผู้ถามนั้นหว่านล้อมผู้ฟังด้วยการ ชวนให้ทำ หรือแนะนำให้ทำนั่นเอง ประโยคคำถามที่ใช้มีดังนี้  

Profile where + preposition P6

การใช้ประโยค Where’s the + (Building) + ? It’s + (Preposition Of Place)

สวัสดีค่ะนักเรียนชั้นป.6 ที่น่ารักทุกคน วันนี้ครูจะพาทุกคนไปเรียนรู้เกี่ยวกับ ประโยค การถามทิศทาง แต่เอ้ะ Where is the building? แปลว่า ตึกอยู่ที่ไหน ประโยคนี้เป็นการถามทางแบบห้วนๆ ที่ใช้กับคนที่เราคุ้นชินหรือคนที่เรารู้จัก แต่หากนักเรียนต้องอยู่ในสถานการณ์ที่ต้องถามกับคนแปลกหน้าโดยเฉพาะฝรั่ง คงต้องมาฝึกถามให้สุภาพมากขึ้น ดังนั้นจึงต้องมีการเกริ่นขึ้นก่อนที่เราจะถามนั่นเองค่ะ ซึ่งนักเรียนที่รักทุกคนได้เรียนรู้ในบทเรียนนี้นะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบการถามทิศทาง   โครงสร้างประโยคถามแบบตรงๆ (Direct Question) “

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย   ซึ่ง = {(y, x) : (x, y ) ∈ r} เช่น r = {(1, 2), (3, 4), (5,

ทริคการสืบค้นข้อมูลทางอินเทอร์เน็ตอย่างง่าย ๆ

ย้อนกลับไปเมื่อหลายสิบปีที่แล้วก่อนที่อินเทอร์เน็ตจะเข้ามามีบทบาทในชีวิตของทุกคนเหมือนอย่างทุกวันนี้ แหล่งการสืบค้นหลัก ๆ จะอยู่ที่ห้องสมุด แต่ในปัจจุบันเราสามารถเข้าถึงข้อมูลต่าง ๆ ได้ง่ายขึ้นเพียงคลิกปลายนิ้ว ข้อมูลที่ต้องการค้นหาก็มาปรากฏอยู่ตรงหน้าให้เลือกสรรมากมาย แต่เราจะมีวิธีการเลือกสืบค้นข้อมูลกันอย่างไร ถึงจะได้ข้อมูลที่ถูกต้องและครบถ้วนที่สุด บทเรียนในวันนี้ถือเป็นอีกหนึ่งเรื่องสำคัญที่จะช่วยให้การหาข้อมูลสำหรับการเรียนของน้อง ๆ นั้นง่ายขึ้น เราไปเรียนรู้เรื่อง การสืบค้นข้อมูลทางอินเทอร์เน็ต กันเลยค่ะ   การสืบค้นข้อมูลทางอินเทอร์เน็ต   เป็นการค้นคว้าหาความรู้โดยใช้สารสนเทศในลักษณะต่าง ๆ โดยมีเว็บไซต์ที่เป็นแหล่งเก็บรวบรวมภาพและข้อมูลต่าง ๆ    

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1