อสมการ

จากบทความที่ผ่านมาได้พูดถึงเรื่องช่วงของจำนวนจริงไปแล้ว บทความนี้เราจะนำความรู้เกี่ยวกับช่วงของจำนวนจริงมาใช้ในการแก้อสมการเพื่อหาคำตอบกันนะคะ ถ้าน้องๆได้อ่านบทความนี้แล้วรับรองว่าพร้อมทำข้อสอบแน่นอนค่ะ
อสมการ

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

อสมการ

อสมการ คือการไม่เท่ากัน ซึ่งการไม่เท่ากันนั้น สามารถเป็นไปได้ทั้ง มากกว่า, น้อยกว่า , มากกว่าหรือเท่ากับ และน้อยกว่าหรือเท่ากับ เนื้อหาในบทความนี้จะเกี่ยวข้องกับเรื่องช่วงของจำนวนจริงด้วย น้องๆสามารถดูบทความเรื่องช่วงของจำนวนจริงเพิ่มเติมได้ที่ >>>ช่วงของจำนวนจริง<<<

การแก้อสมการจะทำคล้ายๆกับสมการ มีเป้าหมายเดียวกันก็คือ หาค่าตัวแปรตัวแปรหนึ่งสมมติให้เป็น x แต่คำตอบจะต่างกับสมการ การแก้สมการหาค่า x เราจะได้ค่า x มา โดยระบุชัดเจนเลยว่า x มีค่าเท่ากับเท่านี้ แต่สำหรับอสมการคำตอบจะเป็นช่วง เช่น แก้อสมการแล้วได้คำตอบว่า x > 3 แสดงว่า x ที่มากกว่า 3 นั้นเป็นคำตอบของอสมการทั้งหมดเลย

สมบัติที่ควรรู้ของอสมการ

ให้ a, b เป็นจำนวนจริงใดๆ

1.) ถ้า a > b แล้ว -a < -b

คำอธิบายเพิ่มเติม ถ้า เรามีจำนวนจริงที่ 2 ตัว ที่ไม่เท่ากัน เมื่อคูณด้วยจำนวนจริงลบเข้าไปทั้งสองฝั่งของอสมการ จะทำให้เครื่องหมายของอสมการเปลี่ยนไป

ตัวอย่าง  2 < 3  สมมติคูณด้วย -3 ทั้งสองข้างของอสมการ จะได้ว่า 2(-3) > 3(-3)  ⇒ -6 > -9

เห็นได้ชัดเลยว่า เมื่อคูณลบไปแล้ว เครื่องหมายจะเปลี่ยน

 

ตัวอย่างการแก้อสมการ

 

1.) จงหาค่า x เมื่อ x + 5 > 2x -2  พร้อมกับวาดเส้นจำนวน

อสมการ

2.) จงหาค่า x เมื่อ x² -3 > 1 พร้อมกับวาดเส้นจำนวน

กรณีที่มีสองวงเล็บที่มากกว่า 0

เราจะเห็นว่าเส้นจำนวนแบ่งออกเป็น 3 ช่วง ถ้าเจอแบบนี้ให้น้องๆ

1.)ทดเครื่องหมายบวกไว้ที่ช่องขวาสุด ช่องถัดไปเป็นลบสลับแบบนี้ไปเรื่อยๆ (เริ่มจากขวาเสมอ) 

2.)พิจารณาเครื่องหมายของอสมการ จะเห็นว่าเป็นเครื่องหมายมากกว่า ดังนั้น ต้องลากเส้นไปทางเครื่องหมายบวกดังรูป

กลับกันถ้าเป็นกรณีน้อยกว่าให้ลากเส้นไปทางเครื่องหมายลบ ดังรูปในข้อ 4

3.) นำค่า x ของทั้งสองช่วงมา ยูเนียนกัน 

 

3.) จงหาค่า x เมื่อ x² + 3x – 18 ≥ 0 พร้อมกับวาดเส้นจำนวน

4.) (O-Net) กำหนดให้ I แทนเซตของจำนวนเต็ม และ A = {x : x ∈ I และ  2x² – 3x – 14 ≤ 0}

ผลรวมของสมาชิกในเซต A เท่ากับเท่าใด

อสมการ

 

 

วีดิโอ อสมการ

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ประพจน์และการเชื่อมประพจน์

บทความนี้เป็นเนื้อหาเกี่ยวกับประพจน์ การเชื่อมประพจน์ และการหาค่าความจริง ซึ่งเนื้อหาเหล่านี้เป็นภาษาของคณิตศาสตร์ เราจะเห็นตัวเชื่อมประพจน์ในทฤษฎีบทต่างๆในคณิตศาสตร์ หลังจากอ่านบทความนี้ น้องๆจะสามารถบอกได้ว่าข้อความไหนเป็นหรือไม่เป็นประพจน์ และน้องๆจะสามารถทำข้อสอบเกี่ยวกับตรรกศาสตร์ได้

ตัวอย่างโจทย์ปัญหา + – × ÷ เศษส่วนและจำนวนคละ

หัวใจสำคัญของการทำโจทย์ปัญหาก็คือการวิเคราะห์ประโยคที่เป็นตัวหนังสือออกมาเป็นสัญลักษณ์ทางคณิตศาสตร์หรือเรียกสั้นๆว่า “การตีโจทย์”ถ้าเราวิเคราะห์ถูกต้องเราก็สามารถแสดงวิธีคิดได้ออกมาอย่างถูกต้องคำตอบที่ได้ก็จะถูกต้องตามมาด้วย ดังนั้นสิ่งที่น้อง ๆจะได้รับจากบทความนี้คือการฝึกวิเคราะห์โจทย์ปัญหาและการแสดงวิธีทำ รับรองว่าถ้าอ่านบทความนี้แล้วนำไปใช้จะได้คำตอบที่ถูกทุกข้ออย่างแน่นอน

สุภาษิตสอนหญิง ข้อคิดเตือนใจหญิงจากยุคสู่ยุค

สุภาษิต คือถ้อยคำหรือข้อความที่กล่าวสืบกันมาตั้งแต่อดีต มีความหมายเป็นคติสอนใจ ไม่ว่าจะเป็นเรื่องของการดำเนินชีวิต ทั้งทางความคิด การพูด และการกระทำ มีสุภาษิตมากมายที่สอนถึงการปฏิบัติตัวของผู้หญิงให้ถูกต้องเหมาะสม บทเรียนในวันนี้ น้อง ๆ จะได้เรียนรู้เรื่อง สุภาษิตสอนหญิง เป็นหนึ่งในบทเรียนเรื่องสุภาษิตที่มีความสำคัญและมีคุณค่าอย่างมาก จะเป็นอย่างไรบ้างนั้นเราจะดูพร้อมกันเลยค่ะ   สุภาษิตสอนหญิง : ความเป็นมา     สุภาษิตสอนหญิง เป็นวรรณกรรมคำสอนประเภทกลอนสุภาพ แต่งโดยสุนทรภู่ ประมาณปี

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

โคลงอิศปปกรณำ

โคลงอิศปปกรณำ วรรณคดีร้อยแก้วที่แปลมาจากนิทานตะวันตก

ในบทเรียนก่อนหน้า น้อง ๆ ได้เรียนรู้เรื่องโคลงโสฬสไตรยางค์กับโคลงนฤทุมนาการกันไปแล้ว แต่โคลงสุภาษิตที่น้อง ๆ ชั้นมัธยมศึกษาปีที่ 2 จะได้เรียนไม่ได้หมดแค่นั้นนะคะ เพราะยังมีอีกหนึ่งโคลงสุภาษิตที่สำคัญไม่แพ้กันเลยคือ โคลงอิศปปกรณำ นั่นเองค่ะ โคลงสุภาษิตที่ชื่อดูอ่านยากเรื่องนี้จะมีที่มาอย่างไร สอนเรื่องอะไรเราบ้าง มีเนื้อหาอย่างไร ให้ข้อคิดแบบไหน ไปเรียนรู้พร้อมกันเลยค่ะ   ความหมายของ โคลงอิศปปกรณำ     โคลงอิศปปกรณำ อ่านว่า โคลง-อิด-สะ-ปะ-ปะ-กะ-ระ-นำ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1