สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ

สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใด ๆ                                        อาศัยสมบัติสมมาตรในการเขียนสมการแสดงความเท่ากันของจำนวนได้ 2 แบบ ดังตัวอย่างต่อไปนี้                        1.   a = 2 หรือ 2 = a
2.   a + b = c หรือ c = a + b
3.  -8x =-2 หรือ -2 = -8x
4.  4x + 1 = x – 2 หรือ x – 2 = 4x + 1
5.  x = y หรือ y = x                                                                                      

สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ
อาศัยสมบัติการถ่ายทอดในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.   ถ้า m = n และ n = 8 แล้วจะสรุปได้ว่า m = 8
2.   ถ้า x = 9 + 5 และ 9 + 5 = 14 แล้วจะสรุปได้ว่า x = 14
3.   ถ้า x = -7y และ -7y = 1.5 แล้วจะสรุปได้ว่า x = 1.5
4.   ถ้า y = 3x + 2 และ 3x + 2 = 5 แล้วจะสรุปได้ว่า y = 5
5.   ถ้า Z = p x N และ p x N = k แล้วจะสรุปได้ว่า Z = k

สมบัติการบวก

ถ้ามีจำนวนสองจำนวนที่เท่ากันอยู่แล้วเมื่อบวกจำนวนทั้งสองด้วยจำนวนที่เท่ากันแล้วผลลัพธ์จะเท่ากัน 

ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                      

อาศัยสมบัติการบวกในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า 5 x 2 = 10 แล้ว (5×2) + (-3) = 10 + (-3)
2.  ถ้า a = 8 แล้ว a + 2 = 8 + 2
3.  ถ้า x + 3 = 12 แล้ว (x + 3) + (-3) = 12 + (-3)
4.  ถ้า m = n แล้ว m + p = n + p เมื่อ p แทนจำนวนจริงใด ๆ
5.  ถ้า x + 0.5 = 9 แล้ว (x + 0.5) + (-1) = 9 + (-1)

จำนวนที่นำมาบวกกับแต่ละจำนวนที่เท่ากันนั้น  อาจจะเป็นจำนวนบวกหรือจำนวนลบก็ได้ ในกรณีที่บวกด้วยจำนวนลบมีความหมายเหมือนกับนำจำนวนลบออกจากจำนวนทั้งสองข้างของสมการ คือ   

ถ้า a = b แล้ว a +(- c) = b +(- c) หรือ a – c = b – c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

นั่นคือ ถ้า a = b แล้ว a – c = b – c  เมื่อ a, b และ c แทนจำนวนจริงใดๆ

สมบัติการคูณ

ถ้ามีจำนวนสองจำนวนที่เท่ากัน เมื่อนำจำนวนอีกจำนวนหนึ่งมาคูณจำนวนทั้งสองนั้นแล้วผลลัพธ์จะเท่ากัน       

ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                                 

อาศัยสมบัติการคูณในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า x = y แล้ว 5x = 5y
2.  ถ้า m + 2 = 3n แล้ว 4(m + 2) = 4(3n)
3.  ถ้า -8x = 16 แล้ว (-8x)(5) = 16(5)
4.  ถ้า z = t แล้ว -3z = -3t
5.  ถ้า a = 2c แล้ว a(-4) = 2c(-4)
จำนวนที่นำมาคูณกับจำนวนสองจำนวนที่เท่ากันนั้น อาจจะเป็นจำนวนเต็มหรือเป็นเศษส่วนก็ได้ เช่น

ถ้า x = y  แล้ว  \frac{1}{4}x=\frac{1}{4}y  หรือ  \frac{x}{4}=\frac{y}{4}

และถ้า a = b, c ≠ 0  แล้ว \frac{1}{c}\times a=\frac{1}{c}\times b   หรือ \frac{a}{c}\times \frac{b}{c}

นั่นคือ ถ้า a = b แล้ว \frac{a}{c}=\frac{b}{c}  เมื่อ a,b และ c แทนจำนวนจริงใด ๆ ที่ c ≠ 0

ฝึกทำโจทย์

ให้บอกสมบัติของการเท่ากันในการแก้สมการต่อไปนี้

         1)  ถ้า x = 5  แล้ว  5  = x

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         2)  ถ้า 4x = 12 แล้ว 12 = 4x

      สมบัติของการเท่ากันที่ใช้  คือ สมบัติสมมาตร

         3)  ถ้า  x = 4a และ 4a  = 8  แล้ว x = 8     

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         4)  ถ้า x – 9 = 13 แล้ว  x – 9 + 8  = 13 + 8

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         5)  ถ้า 3x + 5  = b และ  b  = 20  แล้ว 3x + 5  = 20        

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         6)  ถ้า  x + 1  = 6  แล้ว 2(x + 1)  = 2(6)

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

         7)  ถ้า  6x – 2  = 8  แล้ว  6x – 2 + 2  = 8 + 2

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         8)  ถ้า  5 (x – 6)  = y + 2 และ y + 2  = 25  แล้ว  5 (x – 6)  = 25

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         9)  ถ้า  \frac{4x+10}{5}=\frac{x-6}{3}   แล้ว  \frac{x-6}{3}=\frac{4x+10}{5}          

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         10)  ถ้า  7x = 49  แล้ว 7x \times \frac{1}{7}  = 49 \times \frac{1}{7}

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

สรุป สมบัติของการเท่ากัน

สมบัติสมมาตร : ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำานวุ่นจริงใด ๆ

สมบัติถ่ายทอด : ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการบวก : ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการคูณ : ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

เมื่อน้องๆเรียนรู้เรื่อง สมบัติของการเท่ากัน ทำให้สามารถนำความรู้ที่ได้ไปใช้ในการหาคำตอบของสมการ ซึ่งสามารถนำ สมบัติการเท่ากันมาใช้ในการแก้สมการ ได้รวดเร็วยิ่งขึ้น  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแก้สมการเชิงเส้นตัวแปรเดียว ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแก้สมการได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ สมบัติของการเท่ากัน

        คลิปวิดีโอนี้ได้รวบรวม สมบัติของการเท่ากัน ซึ่งประกอบด้วย สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Comparison of Adjectives การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ

  สวัสดีค่ะนักเรียนชั้นป. 5 ที่น่ารักทุกคน ยินดีต้อนรับทุกคนเข้าสู่บทเรียนเรื่องคำคุณศัพท์กันนะคะ วันนี้ครูได้ สรุปเรื่อง Comparison of Adjectives หรือ การเปรียบเทียบคำคุณศัพท์ในภาษาอังกฤษ มาฝาก ไปลุยกันเลย ความหมาย Comparison of Adjectives คือ การเปรียบเทียบคำคุณศัพท์ ที่ใช้ในการเปรียบเทียบคน สัตว์ สิ่งของ หรือ อื่นๆ

Present Perfect

Present Perfect ในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Present Perfect ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

+ – × ÷ ระคนของเศษส่วนและจำนวนคละ

บทความนี้จะพูดถึงขั้นตอนการหาคำตอบของการ + – × ÷ เศษส่วนและจำนวนคละระคน ซึ่งน้อง ๆ จะสามารถหาคำตอบ แสดงวิธีทำและหาคำตอบออกมาได้อย่างสมเหตุสมผล

M2 V. to be + ร่วมกับ Who WhatWhere + -Like + infinitive

การใช้ V. to be ร่วมกับ Who/ What/Where และ Like +V. infinitive

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to be + ร่วมกับ Who/ What/Where + -Like + infinitive ซึ่งเป็นโครงสร้างที่สับสนบ่อย แต่ที่จริงแล้วง่ายมากๆ ไปลุยกันเลยจ้า Let’s go ความหมาย    Verb to be

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1