สมบัติของการเท่ากัน

สมบัติของการเท่ากัน

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

          การหาคำตอบของสมการนั้น ต้องใช้สมบัติการเท่ากันมาช่วยในการหาคำตอบ จะรวดเร็วกว่าการแทนค่าตัวแปรในสมการซึ่งสมบัติการเท่ากันที่ใช้ในการแก้สมการได้แก่ สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ เรามาทำความรู้จักสมบัติเหล่านี้กันค่ะ

สมบัติสมมาตร

ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำนวนจริงใด ๆ                                        อาศัยสมบัติสมมาตรในการเขียนสมการแสดงความเท่ากันของจำนวนได้ 2 แบบ ดังตัวอย่างต่อไปนี้                        1.   a = 2 หรือ 2 = a
2.   a + b = c หรือ c = a + b
3.  -8x =-2 หรือ -2 = -8x
4.  4x + 1 = x – 2 หรือ x – 2 = 4x + 1
5.  x = y หรือ y = x                                                                                      

สมบัติถ่ายทอด

ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ
อาศัยสมบัติการถ่ายทอดในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.   ถ้า m = n และ n = 8 แล้วจะสรุปได้ว่า m = 8
2.   ถ้า x = 9 + 5 และ 9 + 5 = 14 แล้วจะสรุปได้ว่า x = 14
3.   ถ้า x = -7y และ -7y = 1.5 แล้วจะสรุปได้ว่า x = 1.5
4.   ถ้า y = 3x + 2 และ 3x + 2 = 5 แล้วจะสรุปได้ว่า y = 5
5.   ถ้า Z = p x N และ p x N = k แล้วจะสรุปได้ว่า Z = k

สมบัติการบวก

ถ้ามีจำนวนสองจำนวนที่เท่ากันอยู่แล้วเมื่อบวกจำนวนทั้งสองด้วยจำนวนที่เท่ากันแล้วผลลัพธ์จะเท่ากัน 

ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                      

อาศัยสมบัติการบวกในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า 5 x 2 = 10 แล้ว (5×2) + (-3) = 10 + (-3)
2.  ถ้า a = 8 แล้ว a + 2 = 8 + 2
3.  ถ้า x + 3 = 12 แล้ว (x + 3) + (-3) = 12 + (-3)
4.  ถ้า m = n แล้ว m + p = n + p เมื่อ p แทนจำนวนจริงใด ๆ
5.  ถ้า x + 0.5 = 9 แล้ว (x + 0.5) + (-1) = 9 + (-1)

จำนวนที่นำมาบวกกับแต่ละจำนวนที่เท่ากันนั้น  อาจจะเป็นจำนวนบวกหรือจำนวนลบก็ได้ ในกรณีที่บวกด้วยจำนวนลบมีความหมายเหมือนกับนำจำนวนลบออกจากจำนวนทั้งสองข้างของสมการ คือ   

ถ้า a = b แล้ว a +(- c) = b +(- c) หรือ a – c = b – c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

นั่นคือ ถ้า a = b แล้ว a – c = b – c  เมื่อ a, b และ c แทนจำนวนจริงใดๆ

สมบัติการคูณ

ถ้ามีจำนวนสองจำนวนที่เท่ากัน เมื่อนำจำนวนอีกจำนวนหนึ่งมาคูณจำนวนทั้งสองนั้นแล้วผลลัพธ์จะเท่ากัน       

ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ                                                 

อาศัยสมบัติการคูณในการเขียนสมการแสดงความเท่ากันของจำนวนได้ ดังตัวอย่างต่อไปนี้
1.  ถ้า x = y แล้ว 5x = 5y
2.  ถ้า m + 2 = 3n แล้ว 4(m + 2) = 4(3n)
3.  ถ้า -8x = 16 แล้ว (-8x)(5) = 16(5)
4.  ถ้า z = t แล้ว -3z = -3t
5.  ถ้า a = 2c แล้ว a(-4) = 2c(-4)
จำนวนที่นำมาคูณกับจำนวนสองจำนวนที่เท่ากันนั้น อาจจะเป็นจำนวนเต็มหรือเป็นเศษส่วนก็ได้ เช่น

ถ้า x = y  แล้ว  \frac{1}{4}x=\frac{1}{4}y  หรือ  \frac{x}{4}=\frac{y}{4}

และถ้า a = b, c ≠ 0  แล้ว \frac{1}{c}\times a=\frac{1}{c}\times b   หรือ \frac{a}{c}\times \frac{b}{c}

นั่นคือ ถ้า a = b แล้ว \frac{a}{c}=\frac{b}{c}  เมื่อ a,b และ c แทนจำนวนจริงใด ๆ ที่ c ≠ 0

ฝึกทำโจทย์

ให้บอกสมบัติของการเท่ากันในการแก้สมการต่อไปนี้

         1)  ถ้า x = 5  แล้ว  5  = x

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         2)  ถ้า 4x = 12 แล้ว 12 = 4x

      สมบัติของการเท่ากันที่ใช้  คือ สมบัติสมมาตร

         3)  ถ้า  x = 4a และ 4a  = 8  แล้ว x = 8     

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         4)  ถ้า x – 9 = 13 แล้ว  x – 9 + 8  = 13 + 8

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         5)  ถ้า 3x + 5  = b และ  b  = 20  แล้ว 3x + 5  = 20        

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         6)  ถ้า  x + 1  = 6  แล้ว 2(x + 1)  = 2(6)

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

         7)  ถ้า  6x – 2  = 8  แล้ว  6x – 2 + 2  = 8 + 2

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการบวก

         8)  ถ้า  5 (x – 6)  = y + 2 และ y + 2  = 25  แล้ว  5 (x – 6)  = 25

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการถ่ายทอด

         9)  ถ้า  \frac{4x+10}{5}=\frac{x-6}{3}   แล้ว  \frac{x-6}{3}=\frac{4x+10}{5}          

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติสมมาตร

         10)  ถ้า  7x = 49  แล้ว 7x \times \frac{1}{7}  = 49 \times \frac{1}{7}

      สมบัติของการเท่ากันที่ใช้  คือ  สมบัติการคูณ

สรุป สมบัติของการเท่ากัน

สมบัติสมมาตร : ถ้า a = b แล้ว b = a เมื่อ a และ b แทนจำานวุ่นจริงใด ๆ

สมบัติถ่ายทอด : ถ้า a = b และ b = c แล้ว a = c เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการบวก : ถ้า a = b แล้ว a + c = b + c  เมื่อ a, b และ c แทนจำนวนจริงใด ๆ

สมบัติการคูณ : ถ้า a = b แล้ว ca = cb เมื่อ a, b และ c แทนจำนวนจริงใด ๆ 

เมื่อน้องๆเรียนรู้เรื่อง สมบัติของการเท่ากัน ทำให้สามารถนำความรู้ที่ได้ไปใช้ในการหาคำตอบของสมการ ซึ่งสามารถนำ สมบัติการเท่ากันมาใช้ในการแก้สมการ ได้รวดเร็วยิ่งขึ้น  ลำดับต่อไปที่น้องๆต้องเรียนรู้คือ การแก้สมการเชิงเส้นตัวแปรเดียว ซึ่งจะเป็นการฝึกน้องๆได้ฝึกการคิดวิเคราะห์ และแก้สมการได้อย่างรวดเร็วและแม่นยำ

คลิปวิดีโอ สมบัติของการเท่ากัน

        คลิปวิดีโอนี้ได้รวบรวม สมบัติของการเท่ากัน ซึ่งประกอบด้วย สมบัติสมมาตร สมบัติถ่ายทอด สมบัติการบวก และสมบัติการคูณ  ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ใช้ภาษาพูดอย่างไรให้ถูกต้อง และเหมาะสม

บทนำ สวัสดีน้อง ๆ ทุกคน กลับมาพบกันอีกครั้งในบทเรียนวิชาภาษาไทย วันนี้จะเป็นการเรียนเรื่องระดับภาษา โดยจะมีการแบ่งเนื้อหาออกเป็นภาษาพูด และภาษาเขียน ซึ่งจะมีเนื้อหาเกี่ยวกับระดับของภาษาพูดที่เราควรจะเลือกใช้ให้ถูกต้องตามบุคคล โอกาส และสถานที่ด้วย เป็นอีกหนึ่งบทเรียนในระดับชั้นมัธยมต้นที่น่าสนใจ   ถ้าพร้อมแล้วเรามาเริ่มเรียนไปพร้อม ๆ กันเลย     ภาษาพูด คืออะไร   ภาษา เป็นตัวกลางในการสื่อความหมาย บนโลกนี้นอกจากจะมีหลากหลายภาษาแล้ว ในหนึ่งภาษานั้นก็ยังแบ่งการพูดออกเป็นหลายระดับให้เราได้เลือกใช้แตกต่างกันไป ภาษาพูด

อิศรญาณภาษิต

อิศรญาณภาษิต ศึกษาวรรณคดีคำสอนของไทย

อิศรญาณภาษิต เป็นวรรณคดีที่มีเนื้อหาสอนให้ผู้อ่านรู้จักลักษณะของกลอนเพลงยาวและยังสอดแทรกข้อคิดต่าง ๆ ไว้อีกมากมาย บทเรียนภาษาไทยในวันนี้จะพาน้อง ๆ ไปเจาะลึกถึงประวัติความความเป็นมา ผู้แต่ง ลักษณะคำประพันธ์ของกลอนเพลงยาว และตัวบทที่น่าสนใจ ๆ ในเรื่อง ถ้าน้อง ๆ อยากรู้แล้วว่าวรรณคดีเรื่องนีมีความเป็นมาและความสำคัญอย่างไร เหตุใดจึงอยู่ในแบบเรียนภาษาไทยในเราได้ศึกษากันอยู่ตอนนี้ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ     ความเป็นมาของ   อิศรญาณภาษิต (อ่านว่า

สอบเข้าม.4 MWIT อยากสอบติดต้องเตรียมตัวอย่างไร

สอบเข้าม.4 มหิดลวิทยานุสรณ์ สวัสดีค่ะน้อง ๆ ทุกคน ใครที่กำลังหาข้อมูลเพื่อเตรียมตัวสอบเข้า ม.4 โรงเรียนมหิดลวิทยานุสรณ์กันอยู่บ้าง?  วันนี้พี่แอดมิน NockAcademy ได้ทำการสรุปขั้นตอนการสมัครและการเตรียมตัวสอบมาให้แล้ว! มีรายละเอียดอะไรบ้างไปดูกันเลย… โรงเรียนมหิดลวิทยานุสรณ์หรือที่เราเรียนสั้น ๆ ว่า MWIT เป็นโรงเรียนที่บริหารและจัดการการเรียนการสอนในด้านวิทยาศาสตร์และคณิตศาสตร์โดยมุ่งเน้นไปที่ความเป็นเลิศในวิชาดังกล่าว และค้นหานักเรียนที่มีศักยภาพทางวิทยาศาสตร์และคณิตศาสตร์สูงเพื่อพัฒนาศักยภาพได้อย่างเต็มประสิทธิภาพในการเรียนการสอน ซึ่งช่วงการรับสมัครจะอยู่ในช่วงเดือนสิงหาคมของทุกปี ผู้ที่ต้องการสมัครสอบต้องมีคุณสมบัติดังนี้ คุณสมบัติของผู้สมัครสอบคัดเลือกเข้า ม.4 1. เป็นผู้ที่มีความต้องการเข้าเรียนในโรงเรียนมหิดลวิทยานุสรณ์และต้องการเข้าศึกษาต่อในระดับอุดมศึกษาทางด้านคณิตศาสตร์ วิทยาศาสตร์และเทคโนโลยี

ความยาวรอบรูปเเละพื้นที่ของวงกลม

ความยาวรอบรูปเเละพื้นที่ของวงกลม ความยาวรอบรูปของวงกลม หรือเรียกว่า ความยาวเส้นรอบวงของวงกลม คือ ความยาวของเส้นรอบวงกลมสามารถคำนวณได้ ดังนี้ โดย:  C        คือ ความยาวของเส้นรอบวง (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น) π         คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1