สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สมการเชิงเส้นตัวแปรเดียว

สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น

สมการที่ไม่มีตัวแปร                                   สมการที่มีตัวแปร

5 + 4 = 9                                                         2x + 2 = 8

10 – 2 = 8                                                         y – 9 = -6

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวแปรเดียว และเลขชี้กำลังของตัวแปรเป็นหนึ่ง มีรูปทั่วไปเป็น   ax + b = 0 เมื่อ ≠ 0  และ  a, b  เป็นค่าคงตัว ที่มี x เป็นตัวแปร เช่น 2x + 4 = 0

คำตอบของสมการ

คำตอบของสมการ คือ จำนวนที่แทนตัวแปรในสมการแล้วทำให้สมการเป็นจริง

ตัวอย่างที่ 1  จงตรวจสอบว่าจำนวนใน  [  ] เป็นคำตอบของสมการที่กำหนดให้หรือไม่

  • -8 +  t  =  10         [8]

เมื่อแทน t ด้วย 8 ในสมการ  -8 +  t  =  10

จะได้  -8 +  8  =  10 ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 8 ไม่เป็นคำตอบของสมการ -8 +  t  =  10

  • x + 4 = 12           [8]

เมื่อแทน x ด้วย 8 ในสมการ  x + 4 = 12

จะได้  8 + 4 = 12  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 8 เป็นคำตอบของสมการ  x + 4 = 12

  • 5 +  18  =  y         [0]

เมื่อแทน y ด้วย 0 ในสมการ  5 +  18  =  y

จะได้  5 +  18  =  0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  5 +  18  =  y

  • 2a =  2                 [0]

เมื่อแทน a ด้วย 0 ในสมการ  2a =  2

จะได้  2(0) =  2   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  2a =  2

  • 7 –  x = 0             [6]

เมื่อแทน x ด้วย 0 ในสมการ   7 –  x = 0

จะได้  7 –  6 = 0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 6 ไม่เป็นคำตอบของสมการ 7 –  x = 0

  • 3 × d = -18        [-6]

เมื่อแทน d ด้วย 8 ในสมการ  3 × d = -18

จะได้  3 × (-6) = -18   ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น -6 เป็นคำตอบของสมการ   3 × d = -18

  • a ÷ 6  =  -6        [-2]

เมื่อแทน a ด้วย 0 ในสมการ  a ÷ 6  =  -6

จะได้  (-2) ÷ 6  =  -6   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น -2 ไม่เป็นคำตอบของสมการ  a ÷ 6  =  -6

  • 5y = 50                [10]

เมื่อแทน y ด้วย 10 ในสมการ 5y = 50

จะได้  5(10) = 50  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 10 เป็นคำตอบของสมการ  5y = 50

  • -11 +  a  =  1           [10]

เมื่อแทน a ด้วย 10 ในสมการ  -11 +  a  =  1

จะได้  -11 +  10  =  1  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 10 ไม่เป็นคำตอบของสมการ -11 +  a  =  1

  • \frac{a}{3} =   4                   [12]

เมื่อแทน a ด้วย 12 ในสมการ  \frac{a}{3} =   4  

จะได้  \frac{12}{3} =   4  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 12 เป็นคำตอบของสมการ  \frac{a}{3} =   4  

การหาคำตอบของสมการ โดยวิธีลองแทนค่าตัวแปร

ตัวอย่างที่ 2  จงหาคำตอบของสมการต่อไปนี้   โดยวิธีลองแทนค่าตัวแปร

1)  2x = 8

วิธีทำ       เมื่อแทน  x  ด้วย  4 ใน  2x = 8

       จะได้ 2(4) = 8 เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ  คือ 4

2)  \frac{x}{2} = 16

วิธีทำ       เมื่อแทน  x  ด้วย  32 ใน  \frac{x}{2} = 16

       จะได้  \frac{32}{2} = 16 เป็นสมการที่เป็นจริง

       ดังนั้น  คำตอบของสมการ คือ 32

3)  p + 3 = 16

วิธีทำ       เมื่อแทน  p  ด้วย 13 ใน p + 3 = 16

      จะได้ 13 + 3 = 16  เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ   คือ 13

4)  y – 18 = y

วิธีทำ       เนื่องจากไม่มีจำนวนจริงใดๆแทน y  ใน  y – 18 = y  แล้วได้สมการเป็นจริง

      ดังนั้น  ไม่มีจำนวนจริงใดเป็นคำตอบของสมการ  y – 18 = y

5)  11.2 + n = n + 11.2

วิธีทำ      เนื่องจาก เมื่อแทน n ด้วยจำนวนจริงใดๆ ใน 11.2 + n = n + 11.2 แล้วจะได้สมการเป็นจริงเสมอ

     ดังนั้น  คำตอบของสมการ 11.2 + n = n + 11.2 คือ จำนวนจริงทุกจำนวน

ประโยคภาษาและประโยคสัญลักษณ์

ประโยคภาษา                                                            ประโยคสัญลักษณ์

          สองบวกแปดเท่ากับสิบ                                                  2 + 8 = 10

สามเท่าของสามเท่ากับเก้า                                            3(3) = 9

จำนวนจำนวนหนึ่งบวกกับสิบเท่ากับห้าสิบ                     x + 10 = 50  เมื่อ x แทน จำนวนจำนวนหนึ่ง

ตัวอย่างที่ 3  จงเขียนประโยคสัญลักษณ์แทนประโยคภาษาต่อไปนี้

1)  ผลบวกของสองเท่าของจำนวนจำนวนหนึ่งกับสามเท่าของจำนวนจำนวนนั้นเท่ากับสี่สิบห้า

ตอบ   2x + 3x = 45

2)  สองเท่าของผลบวกของจำนวนจำนวนหนึ่งกับแปดเท่ากับยี่สิบ

ตอบ   2(x + 8) =20

3)  เศษสองส่วนสามของจำนวนจำนวนหนึ่งมากกว่าห้าอยู่เจ็ด

ตอบ   \frac{2}{3}x – 5 = 7

ตัวอย่างที่ 4  จงเปลี่ยนประโยคสัญลักษณ์ต่อไปนี้เป็นประโยคภาษา

1)   \frac{1}{2}x  = 6

ตอบ  เศษหนึ่งส่วนสองของจำนวนจำนวนหนึ่งเท่ากับหก

2) 5x + 6x = 55

ตอบ  ผลบวกของห้าเท่าของจำนวนจำนวนหนึ่งกับหกเท่าของจำนวนจำนวนนั้นเท่ากับห้าสิบห้า

3)  5(x + 9) = 40

ตอบ  ห้าเท่าของผลบวกของจำนวนจำนวนหนึ่งกับเก้าเท่ากับสี่สิบ

ในการหาคำตอบของ สมการเชิงเส้นตัวแปรเดียว โดยใช้วิธีการแทนค่านั้น เหมาะสมกับโจทย์ที่ไม่มีความซับซ้อนมากนัก หากโจทย์มีความซับซ้อน จะทำให้หาคำตอบได้ยากขึ้น ต้องใช้วิธีอื่นในการหาคำตอบของสมการ ซึ่งวิธีนั้นจะต้องอาศัยสมบัติการเท่ากันเข้ามาช่วยในการแก้สมการ น้องๆสามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สมบัติของการเท่ากัน ⇐⇐

วิดีโอ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กลอนบทละคร

กลอนบทละครอ่านอย่างไรให้ถูกต้อง และไพเราะ

บทนำ สวัสดีน้อง ๆ ที่น่ารักทุกคน ยินดีต้อนรับเข้าสู่เนื้อหาการเรียนรู้ภาษาไทยอีกครั้ง สำหรับใครที่กำลังรอคอย  บทเรียนเกี่ยวกับการอ่านบทอาขยานต้องมาทางนี้เลย เพราะว่าเราจะมาเรียนรู้หลักการอ่านอาขยานในประเภทบทละคร ซึ่งแน่นอนว่านอกจากน้อง ๆ จะได้เรียนรู้วิธีการอ่านที่ถูกต้องแล้ว ก็ยังจะได้สนุกไปกับเนื้อเรื่องของบทละครที่เราจะยกมาเป็นตัวอย่างในเนื้อหาวันนี้ด้วย ถ้าหากทุกคนพร้อมแล้วอย่ารอช้า เตรียมตัวไปเข้าสู่บทเรียนกันเลย     บทอาขยาน คืออะไร อาขยาน [อา – ขะ – หยาน] คือ

จำนวนจริงในรูปกรณฑ์ และเลขยกกำลัง

จำนวนจริงในรูปกรณฑ์ จำนวนจริงในรูปกรณฑ์ หรือราก เขียนแทนด้วย อ่านว่า รากที่ n ของ x หรือ กรณฑ์ที่ n ของ x เราจะบอกว่า จำนวนจริง a เป็นรากที่ n ของ x ก็ต่อเมื่อ เช่น 2 เป็นรากที่

การสะท้อน

ในบทความนี้เราจะได้เรียนรู้ภาพที่ได้จากการสะท้อน ( Reflection ) ไปตามแนวแกนต่างๆ หวังว่าน้องๆ จะสามารถนำความรู้ที่ได้จากบทความนี้ ไปประยุกต์ใช้ในห้องเรียนและในชีวิตประจำวันได้อย่างแท้จริง

Past Tense ที่มี Time Expressions ในประโยคบอกเล่าและปฏิเสธ

สวัสดีค่ะนักเรียน ม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ ” Past Tense ที่มี Time Expressions ในประโยคบอกเล่าและปฏิเสธ” ซึ่งเมื่อเล่าถึงเวลาในอดีตส่วนใหญ่แล้วเรามักเจอคำว่า yesterday (เมื่อวานนี้), 1998 (ปี ค.ศ. ที่ผ่านมานานแล้ว), last month (เดือนที่แล้ว)  และกลุ่มคำอื่นๆ ที่กำกับเวลาในอดีต ซึ่งเราจะเจอ Past

จำนวนสมาชิกของเซตจำกัด

จำนวนสมาชิกของเซตจำกัด เป็นเรื่องที่สามารถเอาไปใช้ในชีวิตประจำวันได้จริง และสิ่งที่น้องๆจะได้หลังจากอ่านบทความนี้คือ น้องๆจะสามารถทำโจทย์ปัญหาเกี่ยวกับจำนวนสมาชิกของเซตจำกัดได้ และอาจจะเอาไปประยุกต์ใช้ในชีวิตประจำวันได้ด้วย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1