สมการเชิงเส้นตัวแปรเดียว

สมการเชิงเส้นตัวแปรเดียว

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

สมการเชิงเส้นตัวแปรเดียว

สมการ คือ ประโยคสัญลักษณ์ที่กล่าวถึงความสัมพันธ์ของจำนวนโดยมีสัญลักษณ์  “ = ”  บอกความสัมพันธ์ระหว่างจำนวน อาจมีตัวแปร หรือไม่มีตัวแปร เช่น

สมการที่ไม่มีตัวแปร                                   สมการที่มีตัวแปร

5 + 4 = 9                                                         2x + 2 = 8

10 – 2 = 8                                                         y – 9 = -6

สมการเชิงเส้นตัวแปรเดียว คือ สมการที่มีตัวแปรเพียงตัวแปรเดียว และเลขชี้กำลังของตัวแปรเป็นหนึ่ง มีรูปทั่วไปเป็น   ax + b = 0 เมื่อ ≠ 0  และ  a, b  เป็นค่าคงตัว ที่มี x เป็นตัวแปร เช่น 2x + 4 = 0

คำตอบของสมการ

คำตอบของสมการ คือ จำนวนที่แทนตัวแปรในสมการแล้วทำให้สมการเป็นจริง

ตัวอย่างที่ 1  จงตรวจสอบว่าจำนวนใน  [  ] เป็นคำตอบของสมการที่กำหนดให้หรือไม่

  • -8 +  t  =  10         [8]

เมื่อแทน t ด้วย 8 ในสมการ  -8 +  t  =  10

จะได้  -8 +  8  =  10 ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 8 ไม่เป็นคำตอบของสมการ -8 +  t  =  10

  • x + 4 = 12           [8]

เมื่อแทน x ด้วย 8 ในสมการ  x + 4 = 12

จะได้  8 + 4 = 12  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 8 เป็นคำตอบของสมการ  x + 4 = 12

  • 5 +  18  =  y         [0]

เมื่อแทน y ด้วย 0 ในสมการ  5 +  18  =  y

จะได้  5 +  18  =  0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  5 +  18  =  y

  • 2a =  2                 [0]

เมื่อแทน a ด้วย 0 ในสมการ  2a =  2

จะได้  2(0) =  2   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 0 ไม่เป็นคำตอบของสมการ  2a =  2

  • 7 –  x = 0             [6]

เมื่อแทน x ด้วย 0 ในสมการ   7 –  x = 0

จะได้  7 –  6 = 0  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 6 ไม่เป็นคำตอบของสมการ 7 –  x = 0

  • 3 × d = -18        [-6]

เมื่อแทน d ด้วย 8 ในสมการ  3 × d = -18

จะได้  3 × (-6) = -18   ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น -6 เป็นคำตอบของสมการ   3 × d = -18

  • a ÷ 6  =  -6        [-2]

เมื่อแทน a ด้วย 0 ในสมการ  a ÷ 6  =  -6

จะได้  (-2) ÷ 6  =  -6   ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น -2 ไม่เป็นคำตอบของสมการ  a ÷ 6  =  -6

  • 5y = 50                [10]

เมื่อแทน y ด้วย 10 ในสมการ 5y = 50

จะได้  5(10) = 50  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 10 เป็นคำตอบของสมการ  5y = 50

  • -11 +  a  =  1           [10]

เมื่อแทน a ด้วย 10 ในสมการ  -11 +  a  =  1

จะได้  -11 +  10  =  1  ซึ่งเป็นสมการที่เป็นเท็จ

ดังนั้น 10 ไม่เป็นคำตอบของสมการ -11 +  a  =  1

  • \frac{a}{3} =   4                   [12]

เมื่อแทน a ด้วย 12 ในสมการ  \frac{a}{3} =   4  

จะได้  \frac{12}{3} =   4  ซึ่งเป็นสมการที่เป็นจริง

ดังนั้น 12 เป็นคำตอบของสมการ  \frac{a}{3} =   4  

การหาคำตอบของสมการ โดยวิธีลองแทนค่าตัวแปร

ตัวอย่างที่ 2  จงหาคำตอบของสมการต่อไปนี้   โดยวิธีลองแทนค่าตัวแปร

1)  2x = 8

วิธีทำ       เมื่อแทน  x  ด้วย  4 ใน  2x = 8

       จะได้ 2(4) = 8 เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ  คือ 4

2)  \frac{x}{2} = 16

วิธีทำ       เมื่อแทน  x  ด้วย  32 ใน  \frac{x}{2} = 16

       จะได้  \frac{32}{2} = 16 เป็นสมการที่เป็นจริง

       ดังนั้น  คำตอบของสมการ คือ 32

3)  p + 3 = 16

วิธีทำ       เมื่อแทน  p  ด้วย 13 ใน p + 3 = 16

      จะได้ 13 + 3 = 16  เป็นสมการที่เป็นจริง

                 ดังนั้น  คำตอบของสมการ   คือ 13

4)  y – 18 = y

วิธีทำ       เนื่องจากไม่มีจำนวนจริงใดๆแทน y  ใน  y – 18 = y  แล้วได้สมการเป็นจริง

      ดังนั้น  ไม่มีจำนวนจริงใดเป็นคำตอบของสมการ  y – 18 = y

5)  11.2 + n = n + 11.2

วิธีทำ      เนื่องจาก เมื่อแทน n ด้วยจำนวนจริงใดๆ ใน 11.2 + n = n + 11.2 แล้วจะได้สมการเป็นจริงเสมอ

     ดังนั้น  คำตอบของสมการ 11.2 + n = n + 11.2 คือ จำนวนจริงทุกจำนวน

ประโยคภาษาและประโยคสัญลักษณ์

ประโยคภาษา                                                            ประโยคสัญลักษณ์

          สองบวกแปดเท่ากับสิบ                                                  2 + 8 = 10

สามเท่าของสามเท่ากับเก้า                                            3(3) = 9

จำนวนจำนวนหนึ่งบวกกับสิบเท่ากับห้าสิบ                     x + 10 = 50  เมื่อ x แทน จำนวนจำนวนหนึ่ง

ตัวอย่างที่ 3  จงเขียนประโยคสัญลักษณ์แทนประโยคภาษาต่อไปนี้

1)  ผลบวกของสองเท่าของจำนวนจำนวนหนึ่งกับสามเท่าของจำนวนจำนวนนั้นเท่ากับสี่สิบห้า

ตอบ   2x + 3x = 45

2)  สองเท่าของผลบวกของจำนวนจำนวนหนึ่งกับแปดเท่ากับยี่สิบ

ตอบ   2(x + 8) =20

3)  เศษสองส่วนสามของจำนวนจำนวนหนึ่งมากกว่าห้าอยู่เจ็ด

ตอบ   \frac{2}{3}x – 5 = 7

ตัวอย่างที่ 4  จงเปลี่ยนประโยคสัญลักษณ์ต่อไปนี้เป็นประโยคภาษา

1)   \frac{1}{2}x  = 6

ตอบ  เศษหนึ่งส่วนสองของจำนวนจำนวนหนึ่งเท่ากับหก

2) 5x + 6x = 55

ตอบ  ผลบวกของห้าเท่าของจำนวนจำนวนหนึ่งกับหกเท่าของจำนวนจำนวนนั้นเท่ากับห้าสิบห้า

3)  5(x + 9) = 40

ตอบ  ห้าเท่าของผลบวกของจำนวนจำนวนหนึ่งกับเก้าเท่ากับสี่สิบ

ในการหาคำตอบของ สมการเชิงเส้นตัวแปรเดียว โดยใช้วิธีการแทนค่านั้น เหมาะสมกับโจทย์ที่ไม่มีความซับซ้อนมากนัก หากโจทย์มีความซับซ้อน จะทำให้หาคำตอบได้ยากขึ้น ต้องใช้วิธีอื่นในการหาคำตอบของสมการ ซึ่งวิธีนั้นจะต้องอาศัยสมบัติการเท่ากันเข้ามาช่วยในการแก้สมการ น้องๆสามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สมบัติของการเท่ากัน ⇐⇐

วิดีโอ

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การอ่านบทร้อยกรอง

การอ่านบทร้อยกรอง กาพย์และโคลงอ่านอย่างไรให้ไพเราะ

น้อง ๆ คงจะรู้การคำประพันธ์อย่างกาพย์และโคลงกันอยู่แล้วใช่ไหมคะ เพราะวรรณคดีไทยหลาย ๆ เรื่องที่เราเรียนกันมา ก็ใช้กาพย์และโคลงแต่งกันเสียส่วนใหญ่ และหลังจากที่ได้เรียนลักษณะการแต่งกาพย์กับโคลงสี่สุภาพ ให้ไพเราะกันไปแล้ว จะแต่งอย่างเดียวโดยไม่อ่านให้ถูกต้องก็ไม่ได้ใช่ไหมล่ะคะ ดังนั้นบทเรียนวันนี้จะพาร้อง ๆ ไปเรียนรู้เรื่อง การอ่านบทร้อยกรอง กันบ้าง ว่ามีวิธีอ่านอย่างไรให้ถูกต้องและไพเราะ ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   การอ่านบทร้อยกรอง     การอ่านบทร้องกรอง ประเภทกาพย์

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม

การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม การนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยเเผนภูมิวงกลม เป็นการนำเสนอข้อมูลโดยการเเบ่งพื้นที่ของวงกลมออกเป็นส่วน ๆ เเละมีขนาดของสัดส่วนตามข้อมูลที่ได้ทำการเก็บรวบรวมข้อมูลไว้ การนำเสนอด้วยเเผนภูมิวงกลมเป็นการนำเสนอข้อมูลที่มีอยู่ได้อย่างน่าสนใจ สามารถวิเคราะห์เเละเเปรข้อมูลได้ง่ายขึ้น การสร้างแผนภูมิรูปวงกลมเพื่อนำเสนอข้อมูล การสร้างแผนภูมิวงกลม ทำได้โดยการเเบ่งมุมรอบจุดศูนย์กลางของวงกลมที่มีขนาด 360 องศา ออกเป็นส่วน ๆ ที่เรียกว่า มุมที่จุดศูนย์กลางของวงกลม ตามขนาดที่ได้จากการเทียบส่วนกับปริมาณทั้งหมดในข้อมูล มุมที่จุดศูนย์กลาง = (จำนวนที่สนใจ/จำนวนทั้งหมด) x 360 องศา ตัวอย่างการสร้างแผนภูมิวงกลม จากข้อมูลการสำรวจที่ได้เก็บรวมรวบข้อมูลจากนักเรียนทั้งหมด 200

M5 การใช้ Phrasal Verbs

การใช้ Phrasal Verbs

สวัสดีค่ะนักเรียนชั้นม.5 ที่รักทุกคนวันนี้เราจะไปเรียนรู้กันเรื่อง ” การใช้ Phrasal Verbs“ กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันโลด Phrasal Verbs คืออะไร   Phrasal Verbs คือ คำกริยา โดยเป็นกริยาที่มีคำอื่นๆ อย่างเช่น คำบุพบท (Preposition) ร่วมกันส่วนใหญ่แล้ว Phrasal Verbs จะบอกถึงการกระทำ มักจะเจอในชีวิตประจำวันในสถานการณ์ทั่วไป

_ม2 Present Continuous Tense Profile

Present Continuous Tense

สวัสดีนักเรียนชั้นม.3 ที่น่ารักทุกคนค่า วันนี้เราจะไปเรียนรู้กันเรื่อง ” Present Continuous Tense” พร้อมทั้งตัวอย่างสถานการณ์ใกล้ตัว และข้อสอบวัดความเข้าใจหลังเรียนแบบปังๆกันจร้า หากพร้อมแล้วก็ไปลุยกันเลย เริ่มกับการใช้ Present Continuous Tense   อธิบายสิ่งที่กำลังเกิดขึ้นอยู่ในขณะนั้น เช่น Danniel is playing a football at the moment.

การใช้ Auxiliary Verb: can, can’t

การใช้ Auxiliary Verb: can, can’t  บทนำแสนแซ่บ สวัสดีครับพ่อแม่พี่น้องสุดปังทุกท่าน วันนี้เรามาคุยกันเรื่องของคำกริยาช่วยที่ทำให้เรารู้ว่าคนนั้น ๆ สิ่งนั้น หรืออันนั้นมีความสามารถในการทำอะไรได้บ้างกันดีกว่า  ในภาษาไทยเอง เวลาเราจะอธิบายว่าเรามีความสามารถอะไรเราก็มักจะพูดว่า “เรา… ทำได้” หรือ “เราสามารถ….ทำได้” โดยภาษาอังกฤษสุดที่รักของเราเองก็มีอะไรแบบนั้นเหมือนกัน โดยเค้าใช้คำว่า Can มาช่วย โดยเราจะเรียกคำกริยาช่วยเหลือนี้ว่า Auxiliary verb หรือ

causatives

Causatives: Have and Get Something Done

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้ไวยากรณ์เรื่อง Causatives หรือการใช้ Have/Get Something Done ที่น้องๆ บางคนอาจจะสงสัยว่าคืออะไร ลองไปดูกันเลยครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1