ระบบจำนวนจริง

ระบบจำนวนจริง

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ระบบจำนวนจริง

“ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ

โครงสร้าง ระบบจำนวนจริง

มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น

 

โครงสร้าง

ระบบจำนวนจริง

 

 

จำนวนจริง

จำนวนจริงคือจำนวนที่ประกอบไปด้วย จำนวนตรรกยะและจำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ \mathbb{R} 

 

จำนวนเต็ม

จำนวนนับหรือจำนวนเต็มบวก เขียนแทนด้วยสัญลักษณ์ \mathbb{N} หรือ I^+ คือจำนวนที่เอาไว้ใช้นับสิ่งต่างๆ

เซตของจำนวนนับเป็นเซตอนันต์ นั่นคือ ระบบจำนวนจริง = {1,2,3,…}

จำนวนเต็มศูนย์ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง มีสมาชิกเพียงตัวเดียว คือ I^0 = {0}

จำนวนเต็มลบ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง  คือ ตัวผกผันการบวกของจำนวนนับ ซึ่งตัวผกผัน คือตัวที่เมื่อนำมาบวกกับจำนวนนับจะทำให้ผลบวก เท่ากับ 0 เช่น จำนวนนับคือ 2 ตัวผกผันก็คือ -2 เพราะ 2+(-2) = 0 สมาชิกของเซตของจำนวนเต็มลบมีจำนวนเป็นอนันต์ นั่นคือ I^- = {…,-3,-2,-1}

จำนวนตรรกยะ

จำนวนตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่สามารถเขียนในรูปเศษส่วนของจำนวนเต็มได้ ซึ่งก็คือ ตัวเศษและตัวส่วนจะต้องเป็นจำนวนเต็มเท่านั้น (เต็มบวก, เต็มลบ) เช่น  \frac{1}{2}  จะเห็นว่า ตัวเศษคือ 1 ตัวส่วนคือ 2 ซึ่งทั้ง 1 และ 2 เป็นจำนวนเต็ม และจำนวนตรรกยะยังสามารถเขียนในรูปทศนิยมซ้ำได้อีกด้วย เช่น 3.\dot{3} เป็นต้น

น้องๆสงสัยไหมว่าทำไมจำนวนเต็มถึงอยู่ในจำนวนตรรกยะ?? 

ลองสังเกตตัวอย่างต่อไปนี้ดูค่ะ

-3, 2, 0

-3 เกิดจากอะไรได้บ้าง >>> \frac{-3}{1}, \frac{3}{-1}, \frac{-6}{2}  , … จะเห็นว่าเศษส่วนที่ยกตัวอย่างมานี้ มีค่าเท่ากับ -3 และเศษส่วนเหล่านี้เป็นจำนวนตรรกยะ

2 เกิดจากอะไรได้บ้าง >>> ระบบจำนวนจริง, … จะเห็นว่า 2 สามารถเขียนเป็นเศษส่วนของจำนวนเต็มได้

0 เกิดจากเศษส่วนได้เช่นกัน เพราะ 0 ส่วนอะไรก็ได้ 0  ยกเว้น!!! ระบบจำนวนจริง เศษส่วนนี้ไม่นิยามนะคะ 

ดังนั้น จำนวนเต็มเป็นจำนวนตรรกยะ

ข้อควรระวัง  ตัวเศษสามารถเป็นจำนวนเต็มอะไรก็ได้ แต่!! ตัวส่วนต้องไม่เป็น 0 นะจ๊ะ

เช่น  ระบบจำนวนจริง แบบนี้ถือว่าไม่เป็นจำนวนตรรกยะนะคะ

 

จำนวนอตรรกยะ

จำนวนอตรรกยะ เขียนแทนด้วยสัญลักษณ์ ระบบจำนวนจริง คือจำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มได้ 

เช่น ทศนิยมไม่รู้จบ 1.254545782268975456… , \sqrt{2}, \sqrt{3} เป็นต้น

**√¯ อ่านว่า square root เป็นสัญลักษณ์แทนค่ารากที่ 2 

เช่น 

ระบบจำนวนจริง คือ รากที่ 2 ของ 2 หมายความว่า ถ้านำ \sqrt{2} × \sqrt{2} แล้วจะเท่ากับ 2 

\sqrt{3} คือ รากที่ 2 ของ 3 หมายความว่า ถ้านำ ระบบจำนวนจริง × \sqrt{3} แล้วจะเท่ากับ 3 

สรุปก็คือ รากที่ 2 คือ ตัวที่นำมายกกำลัง 2 แล้วทำให้ square root หายไป

 

ตัวอย่าง ระบบจำนวนจริง

พิจารณาจำนวนต่อไปนี้ แล้วตอบคำถามว่าจำนวนนั้นเป็นจำนวนตรรกยะ, อตรรกยะ, จำนวนจริง

1.) 1.5 

แนวคำตอบ 1.5 สามารถเขียนอยู่ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะ และจำนวนตรรกยะอยู่ในเซตของจำนวนจริง ดังนั้น 1.5 เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

2.) ระบบจำนวนจริง 

แนวคำตอบ 1.\dot{3} เป็นทศนิยมที่ซ้ำ 3 ซึ่งก็คือ 1.33333333… ไปเรื่อยๆ และสามารถเขียนเป็นเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็น 0 ได้ เช่น  ระบบจำนวนจริง ดังนั้น 1.\dot{3} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

3.) π 

แนวคำตอบ π = 3.14159265358979323846264338327950288420…. จะเห็นว่าเป็นเลขทศนิยมไม่ซ้ำและไม่สิ้นสุด ดังนั้น π เป็นจำนวนอตรรกยะ

และเนื่องจาก จำนวนอตรรกยะก็อยู่ในเซตของจำนวนจริง

ดังนั้น  π เป็นจำนวนอตรรกยะและจำนวนจริง

 

4.) \sqrt{5} 

เนื่องจาก \sqrt{5} ไม่ใช่จำนวนเต็ม และไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มที่ส่วนไม่เป็น 0 ได้ และไม่สามารถเขียนในรูปทศนิยมซ้ำได้ 

ดังนั้น \sqrt{5} เป็นจำนวนอตรรกยะและเป็นจำนวนจริง

 

5.) \sqrt{16}

เนื่องจาก \sqrt{16} = ระบบจำนวนจริง = 4 และ 4 เป็นจำนวนเต็ม

ดังนั้น  \sqrt{16} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

6.) \sqrt{25}

เนื่องจาก \sqrt{25} = \sqrt{5}\times \sqrt{5} = 5 

ดังนั้น \sqrt{25} เป็นจำนวนตรรกยะและเป็นจำนวนจริง

 

วีดิโอ ระบบจำนวนจริง

 

 

 

 

 

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_ม5 Relative Clause

การเรียนเรื่อง Relative Clause

สวัสดีค่ะนักเรียนม. 5 ที่รักทุกคน วันนี้เราจะไปดู Relative clause หรือ อนุประโยคในภาษาอังกฤษ ที่ทำหน้าที่เหมือนกันกับคำคุณศัพท์ (Adjective) ซึ่งมีหน้าที่ขยายคำนามที่อยู่ข้างหน้า  และจะใช้ตามหลัง Relative Pronoun เช่น  who, whom, which, that, และ whose แต่สงสัยมั้ยคะว่าทำไมต้องเรียนเรื่องนี้ ลองดูตัวอย่างประโยคด้านล่างแล้วจะร้องอ๋อมากขึ้น พร้อมข้อสอบ Error

ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์

สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาไป ทบทวนคำถาม V. to be, V. to do และ Wh- Questions กับคำศัพท์ในสวนสัตว์ กันค่ะ พร้อมแล้วก็ไปลุยกันเลย Verb to be     กริยาช่วยกลุ่มนี้ที่สามารถขึ้นต้นประโยคคำถามได้ ได้แก่ is, am, are,

งานอดิเรก (Hobbies) ในยุคปัจจุบัน

  ในปัจจุบันงานอดิเรก (Hobbies) นอกจากจะเป็นสิ่งที่ทำให้เราสนุกแล้วยังสามารถเพิ่มพูนทักษะใหม่ๆ  ให้เราได้อีกด้วย  หากมีใครก็ตามถามว่า what do you like to do in your free time? คุณชอบทำอะไรในเวลาว่าง ครูเชื่อว่านักเรียนจะต้องมีหลายคำตอบ เพราะปัจจุบันมีหลายสิ่งหลายอย่างให้ทำเยอะมาก แต่เหนือสิ่งอื่นใด งานอดิเรกนั้นต้องทำให้เราสนุกและมีความสุขกับการได้ทำมันแน่ๆ “Do what you love,

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม

การแยกตัวประกอบพหุนาม การแยกตัวประกอบพหุนาม เป็นการแยกตัวประกอบของสมการเพื่อให้ง่ายต่อการหาคำตอบของสมการที่จะต้องเรียนในเนื้อหาถัดไป ในบทความนี้จะพูดถึงพหุนามดีกรี 2 ตัวแปรเดียว พหุนามดีกรี 2 คือ พหุนามที่มีเลขยกกำลังสูงสุด คือ 2 พหุนามดีกรี 2 ตัวแปรเดียว คือ พหุนามที่มีเลขยกกำลังสูงสุดคือ 2 และ มีตัวแปร 1 ตัว เขียนอยู่ในรูป ax² +

หลักการเบื้องต้นของอัตราส่วน

หลักการเบื้องต้นของอัตราส่วน

“อัตราส่วน คือ ปริมาณ อย่างหนึ่งที่แสดงถึง จำนวน หรือ ขนาด ตามสัดส่วนเมื่อเปรียบเทียบกับอีก ปริมาณ หนึ่งที่เกี่ยวข้องกัน ที่อาจมีได้ตั้งแต่สองปริมาณขึ้นไป”

Three-word Phrasal Verbs

Three-word Phrasal verbs

Hi guys! สวัสดีค่ะนักเรียนชั้นม.5 ที่น่ารักทุกคนวันนี้ครูมีกริยาวลีที่ใช้บ่อยแบบ 3 คำ หรือ Three-word Phrasal Verbs มาฝากกันจ้า ด้านล่างเลยน๊า ขอให้ท่องศัพท์ให้สนุกจ้า ตารางคำศัพท์Three-word Phrasal Verbs ต้องรู้   ask somebody out ชวนออกเดท/ชวนออกไปข้างนอก add up to something ทำให้สมน้ำสมเนื้อ/ทำให้เท่ากัน back something up

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1