ฟังก์ชันเพิ่มและฟังก์ชันลด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ

บทนิยาม

ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า

 f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) < f(x_2)

f เป็นฟังก์ชันลดบนเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) > f(x_2)

 

อธิบายนิยาม

f เป็นฟังก์ชันเพิ่ม เมื่อค่า x เพิ่มขึ้น ค่า y เพิ่มขึ้น

f เป็นฟังก์ชันลด เมื่อค่า x เพิ่มขึ้น แต่ค่า y ลดลง

เมื่อ เราหยิบ x ใดๆ มาสองตัว สมมติให้เป็น 1 และ 2 และสมมติให้ f(1) = 2 , f(2) = 4 จะเห็นว่า f(1) < f(2) เราจะสรุปว่า f เป็นฟังก์ชันเพิ่มบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

ถ้าสมมติให้ f(1) = 5 , f(2) = 3 จะเห็นว่า f(1) > f(2) เราจะสรุปว่า f เป็นฟังก์ชันลดบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

วิธีการตรวจสอบฟังก์ชันเพิ่มและฟังก์ชันลด

ตรวจสอบโดยใช้นิยาม

f(x) = 4x – 3

จะตรวจสอบว่า f เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R} โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

 

g(x) = -2x + 5

จะตรวจสอบว่า g เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}^+ (หรือ (0, ∞))

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R}^+ โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

สาเหตุที่ต้องคูณหรือบวกด้วยจำนวนจริงบางตัว เพราะว่าเราอยากได้รูปแบบของ f(x) และ g(x) เนื่องจากเราไม่สามารถเริ่มพิจารณาตั้งแต่สมการที่เต็มรูปแบบได้ เราจึงต้องค่อยๆเริ่มจากสิ่งที่เรามี นั่นก็คือ x_1x_2 แล้วค่อยบวกหรือคูณด้วยจำนวนจริงสักตัว เพื่อให้ได้รูปแบบของสมการตามที่โจทย์กำหนดมา

 

ตรวจสอบโดยพิจารณาจากกราฟ

f(x) = x² + 2x เป็นฟังก์ชันเพิ่มหรือลดบน (-∞, 0) และเป็นฟังก์ชันเพิ่มหรือลดบนช่วง (0, ∞)

จาก f(x) = x² + 2 เป็นกราฟของพาราโบลาหงายที่มีจุดวกกลับที่จุด (0, 2)

วาดกราฟได้ดังนี้

ฟังก์ชันเพิ่มและฟังก์ชันลด

จะเห็นว่าเมื่อเราแบ่งกราฟเป็นสองช่วง คือ (-∞, 0) และ (0, ∞)

พิจารณา (-∞, 0) จะเห็นว่า ค่าของ y นั้นลดลงในขณะที่ค่า x เพิ่มขึ้น ดังนั้น f เป็นฟังก์ชันลดบนช่วง (-∞, 0)

พิจารณา (0, ∞) จะเห็นว่าค่าของ y เพิ่มขึ้นและค่า x ก็เพิ่มขึ้นด้วย ดังนั้น f เป็นฟังก์ชันเพิ่มบนช่วง (0, ∞)

——————————————————————————————————————————————————————

พิจารณากราฟต่อไปนี้ แล้วบอกว่า f และ g เป็นฟังก์ชันเพิ่มช่วงไหน และเป็นฟังก์ชันลดช่วงไหน

ฟังก์ชันเพิ่มและฟังก์ชันลด

จากกราฟจะได้ว่า g(x)เป็นฟังก์ชั่นเพิ่มบนช่วง [-4, -2]  เพราะ เมื่อ x เพิ่มขึ้น ค่า y ก็เพิ่มขึ้นด้วย

และ f(x) เป็นฟังก์ชันลดบนช่วง [2, 4] เพราะเมื่อ x เพิ่มขึ้น ค่า y ลดลง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

Adjective

คำคุณศัพท์และการเรียงคำคุณศัพท์

สวัสดีน้องๆ ป. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับคำคุณศัพท์และการเรียงคำคุณศัพท์ในภาษาอังกฤษกัน ถ้าพร้อมแล้วไปลุยกันเลยครับ

เห็นแก่ลูก ศึกษาความเป็นมาบทละครพูดเรื่องแรกของไทย

  บทละครพูด เห็นแก่ลูก เป็นวรรณคดีเรื่องแรกที่น้อง ๆ ม.3 ทุกคนจะได้เรียน ความพิเศษของวรรณคดีไทยเรื่องนี้คือเป็นบทละครพูดเรื่องแรกของไทยอีกทั้งยังได้รับการแปลไปยันต่างประเทศอีก 13 ภาษา วรรณคดีเรื่องนี้มีความสำคัญและมีเนื้อหาเกี่ยวกับอะไร ถึงโด่งดัง เป็นที่รู้จัก และได้มาอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปศึกษาประวัติความเป็นมาของวรรณคดีเรื่องนี้กันเลยค่ะ   ความเป็นมา บทละครพูด เห็นแก่ลูก     บทละครพูด เห็นแก่ลูก เป็นพระราชนิพนธ์ในพระบาทสมเด็จพระมงกุฎเกล้าเจ้าอยู่หัว ทรงใช้พระนามแฝงว่าพระขรรค์เพชร

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ

ฟังก์ชันตรีโกณมิติอื่นๆ ฟังก์ชันตรีโกณมิติอื่นๆ ในบทความนี้จะกล่าวถึงฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์ และฟังก์ชันที่เกิดจากการดำเนินการของค่า cosθ sinθ ซึ่งก็คือ tanθ และ cotθ นอกจากนี้ยังจะกล่าวถึงโคฟังก์ชันของฟังก์ชันตรีโกณมิติอีกด้วย ในบทความนี้สิ่งที่น้องๆต้องรู้ก็คือ วิธีการหาค่า cosθ และ sinθ จตุภาคของพิกัดจุดปลายส่วนโค้ง ซึ่งสามารถอ่านได้ตามลิงค์ด้านล่างนี้เลยค่ะ การวัดความยาวส่วนโค้ง ค่าของฟังก์ชันไซน์และโคไซน์ หลังจากที่น้องๆมีพื้นฐาน 2 เรื่องที่กล่าวมาแล้วเราจะเริ่มทำความรู้จักกับฟังก์ชันตรีโกณมิติอื่นๆกันค่ะ   ฟังก์ชันที่เป็นส่วนกลับของฟังก์ชันไซน์และโคไซน์

คำสมาสแบบสมาส คำสมาสแบบสนธิ

เรียนรู้หลักการสร้างคำสมาสแบบสมาส และคำสมาสแบบสนธิ

บทนำ คำสมาส และคำสนธิ ถือว่าเป็นหนึ่งบทเรียนในหลักภาษาไทยของระดับชั้นมัธยมศึกษาตอนต้นที่หลายคนมักมองว่าเป็นเรื่องยาก และปราบเซียนในการสอบสุด ๆ เนื่องจากว่าเราจะต้องมีพื้นฐานความเข้าใจเรื่อง คำบาลี สันสกฤตเพื่อให้สามารถแยกแยะคำ หรือสร้างคำใหม่ได้ รวมไปถึงต้องจำหลักการอ่านเชื่อมเสียงแบบต่าง ๆ จึงทำให้ใครหลายคนรู้สึกว่ามันยากมาก แต่จริง ๆ แล้วน้อง ๆ หลายคนอาจเคยได้ยินหลักการจำที่ว่า “คำสมาสนำมาชน สนธินำมาเชื่อม” ซึ่งเป็นวิธีที่น้อง ๆ ควรจะใช้เป็นแนวทางในการจำอย่างเข้าใจ ดังนั้น เพื่อเป็นการเรียนรู้เรื่องคำสมาสแบบสมาส และคำสมาสแบบสนธิให้เข้าใจมากขึ้น

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1