ฟังก์ชันเพิ่มและฟังก์ชันลด

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ฟังก์ชันเพิ่มและฟังก์ชันลด

ฟังก์ชันเพิ่มและฟังก์ชันลด สามารถตรวจสอบได้จากกราฟและนิยาม สมการหนึ่งสมการอาจจะเป็นทั้งฟังก์ชันเพิ่มและฟังก์ชันลดขึ้นอยู่กับรูปแบบของกราฟและสมการ

บทนิยาม

ให้ f เป็นฟังก์ชันที่ส่งจากโดเมนของฟังก์ชันไปยังจำนวนจริง โดยที่ A เป็นสับเซตของจำนวนจริง และ A เป็นสับเซตของโดเมน จะบอกว่า

 f เป็นฟังก์ชันเพิ่มบนเซตเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) < f(x_2)

f เป็นฟังก์ชันลดบนเซต A ก็ต่อเมื่อ สำหรับ x_1 และ x_2 ใดๆใน A ถ้า x_1x_2 แล้ว f(x_1) > f(x_2)

 

อธิบายนิยาม

f เป็นฟังก์ชันเพิ่ม เมื่อค่า x เพิ่มขึ้น ค่า y เพิ่มขึ้น

f เป็นฟังก์ชันลด เมื่อค่า x เพิ่มขึ้น แต่ค่า y ลดลง

เมื่อ เราหยิบ x ใดๆ มาสองตัว สมมติให้เป็น 1 และ 2 และสมมติให้ f(1) = 2 , f(2) = 4 จะเห็นว่า f(1) < f(2) เราจะสรุปว่า f เป็นฟังก์ชันเพิ่มบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

ถ้าสมมติให้ f(1) = 5 , f(2) = 3 จะเห็นว่า f(1) > f(2) เราจะสรุปว่า f เป็นฟังก์ชันลดบนช่วง [1, 2]

ฟังก์ชันเพิ่มและฟังก์ชันลด

วิธีการตรวจสอบฟังก์ชันเพิ่มและฟังก์ชันลด

ตรวจสอบโดยใช้นิยาม

f(x) = 4x – 3

จะตรวจสอบว่า f เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R} โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

 

g(x) = -2x + 5

จะตรวจสอบว่า g เป็นฟังก์ชันเพิ่มหรือลดบน \mathbb{R}^+ (หรือ (0, ∞))

วิธีทำ ให้ x_1 , x_2 เป็นสมาชิกใน \mathbb{R}^+ โดยที่ x_1x_2

ฟังก์ชันเพิ่มและฟังก์ชันลด

สาเหตุที่ต้องคูณหรือบวกด้วยจำนวนจริงบางตัว เพราะว่าเราอยากได้รูปแบบของ f(x) และ g(x) เนื่องจากเราไม่สามารถเริ่มพิจารณาตั้งแต่สมการที่เต็มรูปแบบได้ เราจึงต้องค่อยๆเริ่มจากสิ่งที่เรามี นั่นก็คือ x_1x_2 แล้วค่อยบวกหรือคูณด้วยจำนวนจริงสักตัว เพื่อให้ได้รูปแบบของสมการตามที่โจทย์กำหนดมา

 

ตรวจสอบโดยพิจารณาจากกราฟ

f(x) = x² + 2x เป็นฟังก์ชันเพิ่มหรือลดบน (-∞, 0) และเป็นฟังก์ชันเพิ่มหรือลดบนช่วง (0, ∞)

จาก f(x) = x² + 2 เป็นกราฟของพาราโบลาหงายที่มีจุดวกกลับที่จุด (0, 2)

วาดกราฟได้ดังนี้

ฟังก์ชันเพิ่มและฟังก์ชันลด

จะเห็นว่าเมื่อเราแบ่งกราฟเป็นสองช่วง คือ (-∞, 0) และ (0, ∞)

พิจารณา (-∞, 0) จะเห็นว่า ค่าของ y นั้นลดลงในขณะที่ค่า x เพิ่มขึ้น ดังนั้น f เป็นฟังก์ชันลดบนช่วง (-∞, 0)

พิจารณา (0, ∞) จะเห็นว่าค่าของ y เพิ่มขึ้นและค่า x ก็เพิ่มขึ้นด้วย ดังนั้น f เป็นฟังก์ชันเพิ่มบนช่วง (0, ∞)

——————————————————————————————————————————————————————

พิจารณากราฟต่อไปนี้ แล้วบอกว่า f และ g เป็นฟังก์ชันเพิ่มช่วงไหน และเป็นฟังก์ชันลดช่วงไหน

ฟังก์ชันเพิ่มและฟังก์ชันลด

จากกราฟจะได้ว่า g(x)เป็นฟังก์ชั่นเพิ่มบนช่วง [-4, -2]  เพราะ เมื่อ x เพิ่มขึ้น ค่า y ก็เพิ่มขึ้นด้วย

และ f(x) เป็นฟังก์ชันลดบนช่วง [2, 4] เพราะเมื่อ x เพิ่มขึ้น ค่า y ลดลง

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การแก้อสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ หลักการแก้อสมการเชิงเส้นตัวแปรเดียว ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้ จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ) ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้

Suggesting Profile

การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ

  สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้ครูจะพาเรียนรู้เกี่ยวกับ การใช้ประโยคคำสั่ง คำขอร้อง และคำแนะนำง่ายๆ “Easy Imperative Sentences” กันนะคะ ถ้าพร้อมแล้วก็ไปลุยกันเลย รูปแบบและโครงสร้างประโยคคำสั่ง Imperative sentence     Imperative sentence ในรูปแบบประโยคบอกเล่าจะ ใช้ Verb base form (V.1)

การอ่านออกเสียงคำควบกล้ำ

การอ่านออกเสียงคำควบกล้ำ อ่านอย่างไรให้ถูกต้อง

ในปัจจุบัน ไม่ว่าจะชมสื่อต่าง ๆ หรือพูดคุยในชีวิตประจำวัน เราก็มักจะเจอคนที่อ่านออกเสียงคำควบกล้ำไม่ชัดอยู่บ่อยครั้ง โดยเฉพาะคำที่เป็น ร หรือ ล ทำให้การสื่อสารอาจผิดพลาดไปเลยก็ได้ ดังนั้น การอ่านออกเสียงคำควบกล้ำ ให้ถูกต้องจึงถือเป็นเรื่องที่สำคัญอย่างมาก บทเรียนในวันนี้ นอกจากน้อง ๆ จะได้เรียนรู้เกี่ยวกับคำควบกล้ำว่ามีอะไรบ้างแล้ว ก็ยังจะได้รู้วิธีอ่านออกเสียงอีกด้วย ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   คำควบกล้ำ คำควบกล้ำ (อักษรควบ) หมายถึง พยัญชนะสองตัวเขียนเรียงกันอยู่ต้นพยางค์และใช้สระเดียวกัน

เตรียมสอบเข้า ม.1 โรงเรียนสวนกุหลาบวิทยาลัย

เตรียมสอบเข้าม.1 โรงเรียนสวนกุหลาบวิทยาลัย สวัสดีค่ะน้อง ๆ วันนี้มาพบกับพี่แอดมินและ Nock Academy อีกเช่นเคย ซึ่งเรายังคงอยู่กับหัวข้อของการเตรียมสอบเข้าม.1กันนะคะ วันนี้แอดมินจะพาน้อง ๆ ไปรู้จักกับโรงเรียนสวนกุหลาบวิทยาและการเตรียมตัวสอบเข้าในระดับชั้นม.1ของโรงเรียนแห่งนี้กันค่ะ ก่อนอื่นแอดมินต้องขอกล่าวประวัติคร่าว ๆ ของโรงเรียนให้ทุกคนได้รู้จักกันก่อนนะคะ โรงเรียนสวนกุหลาบวิทยาเป็นโรงเรียนชายล้วนที่ก่อตั้งขึ้นมาในสมัยพระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว (รัชกาลที่ 5) ถือเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย ที่มีความโดดเด่นในเรื่องของวิชาการ ภาษาและความเป็นผู้นำ โดยศิษย์เก่าที่สำเร็จการศึกษามาจากโรงเรียนสวนกุหลาบวิทยาลัยแห่งนี้หลายคนเป็นผู้ที่มีชื่อเสียงและประสบความเร็จจึงทำให้ชื่อเสียงของโรงเรียนสวนกุหลาบวิทยาลัยนั้นเป็นที่รู้จักกันอย่างแพร่หลายในสังคมไทยมาอย่างยาวนาน หลักสูตรสวนกุหลาบวิทยาลัย ม.ต้น ในปัจจุบันโรงเรียนสวนกุหลาบวิทยาลัยได้มีการปรังปรุงและพัฒนาหลักสูตรให้มีความเท่าทันสังคมไทยในปัจจุบันมากยิ่งขึ้น

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล

แบบฝึกหัดการให้เหตุผล   แบบฝึกหัดการให้เหตุผล ประกอบไปด้วยการให้เหตุผลแบบอุปนัยและการให้เหตุผลแบบนิรนัย ซึ่งแบบฝึกหัดนี้จะช่วยให้น้องๆได้ฝึกฝนการทำโจทย์จนน้องๆเชี่ยวชาญและส่งผลให้น้องๆทำข้อสอบได้แบบไม่ผิดพลาด ถ้าเรารู้เฉยๆเราอาจจะทำข้อสอบได้แต่การที่เราฝึกทำโจทย์ด้วยจะทำให้เราทำข้อสอบได้แน่นอนค่ะ แบบฝึกหัดเพิ่มเติมและข้อสอบ O-Net ตัวอย่างต่อไปนี้เป็นข้อสอบ O-Net ของปีก่อนๆ   1.) พิจารณาการอ้างเหตุผลต่อไปนี้ ก. เหตุ 1. ถ้าฝนไม่ตกแล้วเดชาไปโรงเรียน   2. ฝนตก      ผล   

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1