พื้นที่ผิวทรงกรวยและลูกบาศก์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

พื้นที่ผิวทรงกรวยและลูกบาศก์

การหาพื้นที่ผิวทรงกรวยเเละลูกบาศก์นั้นมักเป็นสิ่งที่เราอาจได้ใช้ในชีวิตประจำวัน ทั้งเรื่องการออกเเบบทางวิศวกรรม หรือสถาปัตยกรรม ที่ต้องนำพื้นที่ผิวมาประเมินค่าใช้จ่ายในการทาสี, การปูกระเบื้อง, หรือเเม้กระทั่งปริมาณการใช้วัสดุในการสร้างชิ้นงานต่าง ๆ

รูปร่างทรงกรวยเเละลูกบาศก์สามารถเห็นได้บ่อยครั้งในชีวิตประจำวัน เช่น โคนไอติม, กรวยจราจร, หมวกปาร์ตี้ ที่มีลักษณะเป็นทรงกรวย เเละลูกเต๋า, ก้อนน้ำเเข็ง ที่มีลักษณะเป็นลูกบาศก์ ซึ่งการหาพื้นที่ผิวทั้งหมดของทรงกรวยเเละลูกบาศก์นั้น มีวิธีง่ายๆ คือ ให้เรามองรูปสามมิติกลายเป็นรูปประกอบของเรขาสองมิติ

พื้นที่ผิวทรงกรวย

ทรงกรวย คือ รูปทรงเรขาคณิต 3 มิติ ที่มีลักษณะปลายด้านหนึ่งเป็นทรงเเหลม เเละปลายอีกด้านเป็นลักษณะวงกลม โดยภาพคลี่ของทรงกรวยจะมีลักษณะเป็นรูปเรขาสองมิติที่ประกอบด้วย รูปสามเหลี่ยมฐานโค้ง เเละ วงกลม

โดยการหาพื้นที่ผิวของทรงกรวยทำได้ดังนี้

 

พื้นที่ผิวทรงกรวย = \large \pi r^{2} + \pi rl

เมื่อ r คือ ความยาวรัศมีของวงกลมที่เป็นฐาน
.      h คือ ความสูงของทรงกรวย หรือ เราเรียกว่า “สูงตรง”
.      l  คือ ความสูงเอียงของทรงกรวย หรือ เราเรียกว่า “สูงเอียง”

 

 


จากสูตรจะเห็นได้ว่าพื้นที่ผิวของทรงกรวยประกอบด้วยสองส่วนคือ ส่วนที่เป็นพื้นที่ผิวของวงกลมที่เป็นฐาน = \pi r^{2} เเละพื้นที่ผิวของสามเหลี่ยมฐานโค้ง = \pi rl  รวมกันทั้งสองส่วนจะได้พื้นที่ผิวทั้งหมดของทรงกรวย


ตัวอย่างโจทย์พื้นที่ผิวทรงกรวย

ตัวอย่างที่ 1 จงหาพื้นที่ผิวของทรงกรวยมีความสูงตรง 16 นิ้ว, ความสูงเอียง 22 นิ้ว, เเละมีเส้นผ่านศูนย์กลาง 14 นิ้ว (โดยให้ π = 22/7)

วิธีทำ จากโจทย์วาดรูปได้ดังนี้

เส้นผ่านศูนย์กลางของทรงกรวยมีความยาว 14 นิ้ว ครึ่งหนึ่งของเส้นผ่านศูนย์กลางคือ รัศมี เเสดงว่ารัศมีความยาว 7 นิ้ว ดังนั้น

พื้นที่ผิวทรงกรวย = \dpi{120} \pi r^{2} + \pi rl

.                            = \dpi{120} \frac{22}{7} \cdot 7^{2} + \frac{22}{7}\cdot 7\cdot 22
.                            = \dpi{120} 22\cdot 7+ 22\cdot 22
.                            = \dpi{120} 154 + 484
.                            = \dpi{120} 638  ตารางนิ้ว

ตอบ พื้นที่ผิวของทรงกรวยมีขนาด 638 ตารางนิ้ว

ตัวอย่างที่ 2 จงหาพื้นที่ผิวของกรวยจราจรที่มีลักษณะทรงกรวยด้านล่างไม่มีส่วนปิดมีความสูงตรง 16 เซนติเมตรเเละมีความสูงเอียง 20 เซนติเมตร (โดยให้ π = 3.14)

วิธีทำ จากโจทย์วาดรูปได้ดังนี้

โจทย์บอกว่ากรวยจราจรด้านล่างไม่มีส่วนปิดดังนั้น เราจึงไม่ต้องหาพื้นที่ของวงกลมที่เป็นฐานของทรงกรวยจะได้ว่า
พื้นที่ผิวของกรวยจราจร = \pi rl

จากสูตรจะเห็นได้ว่า ต้องใช้รัศมีของวงกลมเเต่โจทย์ไม่ได้ให้รัศมีมา ซึ่งเราสามารถหารัศมีของวงกลมได้ด้วย ทฤษฎีบทพีทาโกรัส 
.                                            c^{2} = a^{2} + b^{2}
โดยให้ความสูงเอียงเป็นด้านตรงข้ามมุมฉาก = c เเละให้ความสูงตรงเป็น a เเละให้รัศมีเป็น b จะได้ว่า
.                                            20^{2} = 16^{2} + b^{2}
.                                            400 = 256 + b^{2}
.                               400 - 256 = b^{2}
.                                            144 = b^{2}
.                                                 b = \sqrt{144} = 12
รัศมีของวงกลมมีความยาว 12 เซนติเมตร ดังนั้น
พื้นที่ผิวของกรวยจราจร = \pi rl
.                                       = 3.14 \cdot 12\cdot 20
.                                       = 753.6 ตารางเซนติเมตร

ตอบ พื้นที่ผิวของกรวยจราจรมีขนาด 753.6 ตารางเซนติเมตร


พื้นที่ผิวทรงลูกบาศก์

ลูกบาศก์ คือ รูปทรงสามมิติที่ประกอบด้วยรูปเรขาคณิตสองมิติที่เป็น สี่เหลี่ยมจตุรัสทั้ง 6 ด้านเเละเเต่ละด้านมีขนาดเเละความยาวเท่ากันทั้งหมด

โดยการหาพื้นที่ของทรงลูกบาศก์สามารถทำได้ดังนี้

 

พื้นที่ผิวทรงลูกบาศก์ = 6\cdot d^{2}
เมื่อ d = ความยาวด้านของทรงลูกบาศก์

 

 

 

จากสูตรจะเห็นได้ว่าเป็นการหาพื้นที่สี่เหลี่ยมจตุรัส = ด้าน x ด้าน เเล้วคูณด้วย 6 เป็นเพราะว่ามีสี่เหลี่ยมจตุรัส 6 ชิ้นประกอบกันทำให้เราได้พื้นที่ผิวทั้งหมดของทรงลูกบาศก์


ตัวอย่างโจทย์พื้นที่ผิวทรงลูกบาศก์

ตัวอย่างที่ 3 จงหาพื้นที่ผิวของทรงลูกบาศก์โดยลูกบาศก์มีความยาวด้าน 10 เซนติเมตร

วิธีทำ จากโจทย์จะวาดรูปได้ดังนี้

ดังนั้นพื้นที่ผิวของทรงลูกบาศก์ = 6\cdot d^{2}
.                                                   = 6\cdot 10^{2}
.                                                   = 6\cdot 100
.                                                   = 600 ตารางเซนติเมตร

 

ตอบ พื้นที่ผิวของทรงลูกบาศก์นี้มีขนาด 600 ตารางเซนติเมตร

ตัวอย่างที่ 4 จงหาพื้นที่ผิวรอบนอกเเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์ต่อไปนี้

วิธีทำ จากโจทย์จะเห็นได้ว่าทรงสี่เหลี่ยมลูกบาศก์นี้มีช่องสี่เหลี่ยมที่มีความยาวด้าน 5 นิ้วให้เรามองสี่เหลี่ยมนี้เป็นปริซึมสี่เหลี่ยมที่มีความยาวด้าน 5 นิ้ว ยาว 10 นิ้ว เเละโจทย์บอกว่าให้เราหาพื้นที่ผิวรอบนอกของทรงลูกบาศก์ (พื้นที่เเรเงาสีเทา) เเสดงว่าพื้นที่ด้านในของปริซึมสี่เหลี่ยมไม่นำมาคิด 


ดังนั้นพื้นที่ผิวของรอบนอกของทรงลูกบาศก์ = พื้นที่ผิวของทรงลูกบาศก์ – (พื้นที่ของสี่เหลี่ยม x 2)
.                                                                        = (6\cdot d^{^{2}}) - (2\cdot a^{^{2}})          (โดยให้ความยาวด้านของสี่เหลี่ยม = a)
.                                                                        = (6\cdot 10^{2}) - (2\cdot 5^{2})
.                                                                        = (6\cdot 100) - (2\cdot 25)
.                                                                        = 600 - 50
.                                                                        = 550 ตารางนิ้ว

เเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์คือผลรวมของพื้นที่ผิวรอบนอกของทรงลูกบาศก์ (พื้นที่เเรเงาสีเทา) กับพื้นที่ผิวด้านข้างของปริซึมสี่เหลี่ยม (พื้นที่เเรเงาสีเเดง)

   

ดังนั้นพื้นที่ผิวทั้งหมดของทรงลูกบาศก์ = พื้นที่ผิวรอบนอกของทรงลูกบาศก์+พื้นที่ผิวด้านข้างของปริซึมสี่เหลี่ยม
.                                                                = 550 + (4\cdot d\cdot a)
.                                                                = 550 + (4\cdot 10\cdot 5)
.                                                                = 550 + (200)
.                                                                = 750 ตารางนิ้ว

ตอบ พื้นที่ผิวรอบนอกของทรงลูกบาศก์มีขนาด 550 ตารางนิ้ว เเละพื้นที่ผิวทั้งหมดของทรงลูกบาศก์มีขนาด 750 ตารางนิ้ว

ตัวอย่างที่ 5 จงหาพื้นที่ผิวของทรงลูกบาศก์ต่อไปนี้

วิธีทำ จากโจทย์จะเห็นได้ว่าเส้นทะเเยงมุมของพื้นที่สี่เหลี่ยมมีความยาว 12 หน่วย เราสามารถหาความยาวด้านของทรงลูกบาศก์ได้ด้วย ทฤษฎีบทพีทาโกรัส 

c^{2} = a^{2} + b^{2}
12^{2} = a^{2} + b^{2}  โดยด้าน a เเละ b เป็นความยาวด้านของทรงลูกบาศก์ซึ่งมีขนาดเท่ากัน มีค่า = d
144 = d^{2} + d^{2}
144 = 2d^{2}

\frac{144}{2} = d^{2}
72 = d^{2}
d = \sqrt{72} หน่วย

ดังนั้น พื้นที่ผิวของทรงลูกบาศก์ = 6\cdot d^{2}
.                                                    = 6\cdot (\sqrt{72})^{2}     
.                                                    = 6\cdot 72
.                                                    = 432    ตารางหน่วย

ตอบ พื้นที่ผิวของทรงลูกบาศก์นี้มีขนาด 432 ตารางหน่วย

หากน้อง ๆ สามารถคำนวณพื้นที่ผิวของทรงกรวยเเละลูกบาศก์ได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคต น้องสามารถศึกษาการหา พื้นที่ผิวทรงกรวยเเละลูกบาศก์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ พื้นที่ผิวทรงกรวยเเละลูกบาศก์

คลิปวิดีโอนี้ได้รวบรวมวิธีหา พื้นที่ผิวทรงกรวยเเละลูกบาศก์ ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

พระบรมราโชวาท

พระบรมราโชวาท ศึกษาตัวบทและคุณค่าที่อยู่ในวรรณคดี

พระบรมราโชวาท เป็นวรรณคดีไทยที่ทรงคุณค่าอีกเรื่องหนึ่ง ที่มีมาตั้งแต่สมัยรัชกาลที่ 5 หลังจากที่ได้เรียนเกี่ยวกับประวัติความเป็นมาและเรื่องย่อกันไปแล้ว บทเรียนในวันนี้ก็จะพาน้อง ๆ ไปเจาะลึกถึงตัวบทเด่น ๆ ว่ามีใจความอย่างไร รวมถึงศึกษาคุณค่าที่สอดแทรกอยู่ในเรื่องอีกด้วย ถ้าพร้อมแล้วไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ   ตัวบทเด่น ๆ ในพระบรมราโชวาท   ถอดความ ความตอนนี้กล่าวถึงพระประสงค์ของรัชกาลที่ 5 ที่ไม่ต้องการให้พระโอรสใช้คำนำหน้าเป็นเจ้า แต่ให้ใช้คำนำหน้าเป็นนายหรืออาจให้ใช้คำลงท้ายแบบขุนนางชั้นสูงได้เท่านั้น เพราะเมื่อประกาศให้คนรู้ว่าเป็นใครสิ่งที่จะตามมาก็คือการต้องรักษายศไว้

ฉันท์

ฉันท์ เรียนรู้การแต่งคำประพันธ์โบราณที่ได้รับอิทธิพลจากอินเดีย

จากที่เราได้เรียนรู้เกี่ยวกับวรรณคดีกันมามากมายหลายเรื่อง น้อง ๆ หลายคนคงจะพอจะคุ้นหูและผ่านตากันมาบ้างแล้วกับคำประพันธ์ประเภท ฉันท์ แต่เมื่อเห็นครั้งแรก ด้วยความที่ไม่คุ้นเคยก็อาจจะทำให้น้อง ๆ คิดว่าคำประพันธ์ประเภทนี้แต่งยาก เพราะรู้สึกไม่คุ้นเคยเหมือนอย่างพวกกาพย์หรือกลอน แต่รู้หรือไม่คะ ว่าจริง ๆ แล้วการแต่งฉันท์ไม่ใช่เรื่องยากอย่างที่คิดเลยค่ะ บทเรียนในวันนี้นอกจากจะพาน้อง ๆ ไปเรียนรู้ความเป็นมาของฉันท์ รวมไปถึงลักษณะบังคับต่าง ๆ ที่จำเป็นเพื่อฝึกแต่งกันค่ะ ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้กันเลยดีกว่า   ความเป็นมาของ ฉันท์  

wh-questions + was, were

การใช้ Wh-questions  with  was, were

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้เรื่อง “การใช้ Wh-questions  with  was, were (Verb to be in the past)” ไปลุยกันเลยจร้า Sit back, relax, and enjoy the lesson! —นั่งพิงหลังชิวๆ ทำใจสบายๆ แล้วไปสนุกกับบทเรียนกันจร้า—  

โวหารภาพพจน์ กลวิธีการสร้างจินตภาพที่ลึกซึ้งและสวยงาม

การสร้างจินตภาพอย่างการใช้ โวหารภาพพจน์ เป็นกลวิธีในการใช้ภาษาอีกอย่างหนึ่ง เลือกใช้ถ้อยคำเพื่อให้ผู้อ่านเห็นภาพ หรืออาจเรียกว่าเป็นการแทนภาพนั่นเอง น้อง ๆ คงจะพบเรื่องของโวหารภาพพจน์ได้บ่อย ๆ เวลาเรียนเรื่องวรรณคดี บทเรียนในวันนี้เลยจะพาไปทำความรู้จักกับภาพพจน์ต่าง ๆ ให้มากขึ้นว่ามีอะไรบ้าง ถ้าพร้อมแล้วไปดูพร้อมกันเลยค่ะ   ความหมายของภาพพจน์     ภาพพจน์ คือถ้อยคำที่เป็นสำนวนโวหารทำให้นึกเห็นภาพ ถ้อยคำที่เรียบเรียงอย่างมีชั้นเชิงเป็นโวหาร มีเจตนาให้มีประสิทธิผลต่อความคิด เป็นกลวิธีทางภาษาที่มุ่งให้เกิดความรู้ความเข้าใจจินตนาการ เน้นให้เกิดอรรถรสและสุนทรีย์ในการสื่อสารที่ลึกซึ้งกว่าการบอกเล่าแบบตรงไปตรงมา  

M2 V. to be + ร่วมกับ Who WhatWhere + -Like + infinitive

การใช้ V. to be ร่วมกับ Who/ What/Where และ Like +V. infinitive

สวัสดีค่ะนักเรียนชั้นม.2 ทุกคน วันนี้เราจะไปเรียนรู้เรื่อง การใช้ V. to be + ร่วมกับ Who/ What/Where + -Like + infinitive ซึ่งเป็นโครงสร้างที่สับสนบ่อย แต่ที่จริงแล้วง่ายมากๆ ไปลุยกันเลยจ้า Let’s go ความหมาย    Verb to be

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1