ปริมาตรของปริซึมและทรงกระบอก

ในบทความนี้จะกล่าวความหมายและหกในการคิดคำนวณหาปริมาตรของปริซึมและทรงกระบอก
Picture of tucksaga
tucksaga

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ในทางคณิตศาสตร์ เราอาจคำนวณหาปริมาตรของสิ่งของต่างๆได้โดยไม่ต้องใช้การแทนที่น้ำ ในบทเรียนนี้นักเรียนจะได้เรียนการหาปริมาตรของรูปเรขาคณิตสามมิติหลายชนิด ซึ่งในกรณีที่รูปเรขาคณิตนั้นมีฐานทั้งสองข้างเป็นรูปเหลี่ยมที่เท่ากันทุกประการหรือเป็นวงกลมที่เท่ากันทุกประการและอยู่ในระนาบที่ขนานกัน นั่นมายถึง ปริมาตรของปริซึมและทรงกระบอก

ปริซึมและทรงกระบอกในชีวิตประจำวัน

  1. บุคคลในหลายสาขาอาชีพต้องเข้าใจและชำนาญในเรื่องของการวัด การชั่ง การตวง และเรื่องที่เกี่ยวกับปริมาตรเป็นอย่างดี ไม่เช่นนั้นอาจทำให้เกิดข้อผิดพลาดและเสียหาย เช่น วิศวกรอาจออกแบบโครงสร้างของสิ่งก่อสร้างต่าง ๆ ได้ไม่แข็งแรงพอ นักวิทยาศาสตร์อาจทำการทดลองแล้วผิดพลาดทำให้เกิดการระเบิด หรือพ่อครัวอาจปรุงอาหารแล้วได้รสชาติไม่คงที่
  2. สำหรับบุคคลทั่วไป การเรียนรู้และใช้ความรู้เกี่ยวกับปริมาตรจะช่วยให้เราเป็นผู้บริโภคที่ฉลาดในการเลือกซื้อสินค้า รู้จักเปรียบเทียบราคาของสินค้าต่อหน่วยปริมาตร ทำให้เลือกซื้อสินค้าได้ถูกกว่าและช่วยให้เราประหยัดค่าใช้จ่ายได้
  3. เมื่อกล่าวถึงการวัดความจุ จะหมายถึงการหาปริมาตรการหาปริมาตรของวัตถุใด ๆ อาจทำได้โดยการจมวัตถุนั้นลงในภาชนะที่มีน้ำอยู่ ตราบใดที่วัตถุไม่ละลายหรือดูดซับน้ำ ปริมาตรของน้ำส่วนที่เพิ่มขึ้น หรือปริมาตรของน้ำที่ล้นออกมาในกรณีที่เดิมมีน้ำอยู่เต็มภาชนะพอดี จะเท่ากับปริมาตรของวัตถุนั้น วิธีการนี้เป็นการหาปริมาตรของวัตถุโดยการแทนที่น้ำ

ปริมาตรทรงกระบอก

ปริมาตรของปริซึม

            ทรงสี่เหลี่ยมมุมฉากเป็นปริซึมชนิดหนึ่งที่เรียกว่า ปริซึมสี่เหลี่ยมมุมฉาก นักเรียนรู้จักการหาปริมาตรของทรงสี่เหลี่ยมมุมฉากมาแล้ว ดังนั้น สูตรการหาปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก จึงเป็นสูตรเดียวกันกับสูตรการหาปริมาตรของทรงสี่เหลี่ยมมุมฉาก กล่าวคือ

 

ปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก = ความกว้าง x ความยาว x ความสูง

                                  =พื้นที่ฐาน x ความสูง

 

            สำหรับปริมาตรของปริซึมสามเหลี่ยมใด ๆ หาได้โดยอาศัยวิธีหาปริมาตรของปริซึมสามเหลี่ยมมุมฉากดังนี้

            ให้นักเรียนพิจารณาการตัดปริซึมสี่เหลี่ยมมุมฉากตามระนาบที่แรเงาดังแสดงในรูป จะได้รูปเรขาคณิตสามมิติสองรูปที่มีขนาดและรูปร่างเป็นอย่างเดียวกัน รูปเรขาคณิตสามมิติทั้งสองรูปเป็นปริซึมสามเหลี่ยมมุมฉากที่มีปริมาตรเท่ากัน แต่ละรูปมีปริมาตรเป็นครึ่งหนึ่งของปริมาตรของปริซึมสี่เหลี่ยมมุมฉาก

ปริซึม

            เราสามารถนำสูตรการหาปริมาตรของปริซึมสามเหลี่ยมใด ๆ ไปหาสูตรของปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมได้โดยแบ่งฐานของปริซึมหลายเหลี่ยมนั้นออกเป็นรูปสามเหลี่ยมหลาย ๆ รูปตัวอย่างเช่นเราแบ่งปริซึมห้าเหลี่ยมซึ่งสูง h หน่วยออกเป็นปริซึมสามเหลี่ยม 3 รูปได้ ดังนี้

ปริมาตรของปริซึม

ปริมาตรของทรงกระบอก

            นักเรียนลองนึกภาพของรูปหลายเหลี่ยมด้านเท่ามุมเท่าตามลำดับที่กำหนดให้ข้างล่างนี้ เริ่มจากรูปสามเหลี่ยมด้านเท่า รูปสี่เหลี่ยมจัตุรัส รูปห้าเหลี่ยมด้านเท่ามุมเท่า รูปหกเหลี่ยมด้านเท่ามุมเท่า รูปเจ็ดเหลี่ยมด้านเท่ามุมเท่า และรูปแปดเหลี่ยมด้านเท่ามุมเท่า จะสังเกตเห็นว่ายิ่งจำนวนด้านมีมากขึ้นเท่าใด รูปหลายเหลี่ยมด้านเท่ามุมเท่าเหล่านั้นก็จะมีรูปร่างใกล้เคียงกับวงกลมมากขึ้นตามไปด้วย

รูปหลายเหลี่ยม

            เราอาจกล่าวได้ว่า ทรงกระบอกจึงมีลักษณะใกล้เคียงกับปริซึมที่มีฐานเป็นรูปหลายเหลี่ยมด้านเท่ามุมเท่าที่มีจำนวนด้านมาก ๆ ดังนั้นการหาปริมาตรของทรงกระบอกจึงหาได้ในทำนองเดียวกันกับการหาปริมาตรของปริซึมนั่นเอง

ปริมาตรทรงกระบอก

คลิปวิดีโอเรื่องปริมาตรของปริซึมและทรงกระบอก

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

ดีเทอร์มิแนนต์

ดีเทอร์มิแนนต์ ดีเทอร์มิแนนต์ (Determinant) คือ ค่าของตัวเลขที่สอดคล้องกับเมทริกซ์จัตุรัส ถ้า A เป็นเมทริกซ์จัตุรัส จะเขียนแทนดีเทอร์มิแนนต์ของ A ด้วย det(A) หรือ โดยทั่วไปการหาค่าดีเทอร์มิแนนต์ที่เจอในข้อสอบจะไม่เกินเมทริกซ์ 3×3 เพราะถ้ามากกว่า 3 แล้ว จะเริ่มมีความยุ่งยาก **ค่าของดีเทอร์มิแนนต์จะเป็นจำนวนจริงและมีเพียงค่าเดียวเท่านั้นที่จะสอดคล้องกับเมทริกซ์จัตุรัส เช่น เมทริกซ์ B ก็จะมีค่าดีเทอร์มิแนนต์เพียงค่าเดียวเท่านั้น**  

เส้นตรง

เส้นตรง

เส้นตรง เส้นตรง มีสมการรูปแบบทั่วไปคือ Ax + By + C = 0 และสมการรูปแบบมาตรฐานของเส้นตรงจะเขียนอยู่ในรูป y = mx + C ซึ่งจะอยู่ในหัวข้อ “สมการเส้นตรง” เส้นตรงหนึ่งเส้นประกอบไปด้วยจุดหลายจุด ซึ่งจุดเหล่านี้จะทำให้เราสามารถหาความชันได้ และเมื่อเราทราบความชันก็จะสามารถหาสมการเส้นตรงได้นั่นเอง ความชันของเส้นตรง ความชันของเส้นตรง ส่วนใหญ่นิยมใช้ m

จำนวนตรงข้ามและค่าสัมบูรณ์

จำนวนตรงข้ามและค่าสัมบูรณ์

       บทความนี้ ได้รวบรวมเนื้อหาเรื่อง จำนวนตรงข้ามและค่าสัมบูรณ์ ซึ่งเป็นพื้นฐานในการบวกลบจำนวนเต็ม โดยก่อนหน้านี้น้องๆได้เรียนเรื่องการเปรียบเทียบจำนวนเต็มมาแล้ว ต่อไปจะพูดถึงค่าสัมบูรณ์ของจำนวนเต็มใดๆ จะหาได้จากระยะที่จำนวนเต็มนั้นอยู่ห่างจาก 0 บนเส้นจำนวน แต่ก่อนอื่นเรามาทำความรู้จักกับจำนวนตรงข้ามกันก่อนนะคะ จำนวนตรงข้าม       “หากค่าของจำนวนที่อยู่ห่างจาก 0 เท่ากัน แต่อยู่ต่างทิศทางกันมีค่าเท่ากันหรือไม่” (ค่าไม่เท่ากัน)           

ร้อยละ

การคำนวณร้อยละในชีวิตประจำวัน

บทความนี้เราจะได้เรียนรู้ความหมายของคำว่าร้อยละ หรือเปอร์เซ็นต์ รวมทั้งความสัมพันธ์ของอัตราส่วนที่คิดคำนวณเป็นร้อยละ หรือเปอร์เซ็นต์ ที่จะทำให้เราสามารถนำไปใช้ได้จริงในชีวิตประจำวัน

กลอนดอกสร้อยรำพึงในป่าช้า

กลอนดอกสร้อยรำพึงในป่าช้า ความเป็นมาของวรรณคดีที่แปลจากภาษาอังกฤษ

กลอนดอกสร้อยรำพึงในป่าช้า เป็นวรรณคดีที่ไทยที่ถูกแปลมาจากภาษาอังกฤษ น้อง ๆ คงจะสงสัยกันใช่ไหมคะว่าทำไมเราถึงได้เรียนวรรณคดีที่ถูกแปลจากภาษาอื่นด้วย บทเรียนในวันนี้จะพาน้อง ๆ ไปทำความรู้จักวรรณคดีที่ทรงคุณค่าอีกเรื่องหนึ่งว่ามีที่มาและเรื่องย่ออย่างไร ใครเป็นผู้แต่งในฉบับภาษาไทย ถ้าพร้อมที่จะเรียนรู้แล้วก็ไปดูกันเลยค่ะ   ความเป็นมา กลอนดอกสร้อยรำพึงในป่าช้า     วรรณคดีเรื่องกลอนดอกสร้อยรำพึงในป่าช้า วรรณคดีเรื่องนี้มีที่มาจากกวีนิพนธ์อังกฤษชื่อ Elegy Written in a country churchyard ของ ธอร์มัส

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1