บทกลับของทฤษฎีบทพีทาโกรัส

ในบทความนี้เราจะได้เรียนรู้ความหมายและหลักการในการแสดงเหตุและผลของบทกลับของทฤษฎีบทพีทาโกรัส
บทกลับของทฤษฎีบทพีทาโกรัส

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

จะเห็นได้ว่าบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนําผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนําเหตุมาเป็นผลนั่นเอง เพื่อประยุกต์ใช้ในรูปสามเหลี่ยมแต่ละลักษณะนั่นเอง

บทกลับของทฤษฎีบทพีทาโกรัส

บทกลับของทฤษฎีบทพีทาโกรัสกล่าวว่า สำหรับรูปสามเหลี่ยมใดๆ ถ้ากำลังสองของความยาวของด้านด้านหนึ่งเท่ากับผลบวกของกำลังสองของความยาวของด้านอีกสองด้านแล้วรูปสามเหลี่ยมนั้นเป็นสามเหลี่ยมมุมฉาก

โดยบทกลับของทฤษฎีบทพีทาโกรัสเป็นการนำผลของทฤษฎีบทพีทาโกรัสมาเป็นเหตุและนำเหตุมาเป็นผล ดังนั้น

เหตุ: มีรูปสามเหลี่ยมรูปหนึ่ง เป็นรูปสามเหลี่ยมมุมฉาก

ผล : กำลังสองของความยาวของด้านตรงข้ามมุมฉาก เท่ากับ ผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉากของรูปสามเหลี่ยม

เมื่อนำผลข้างต้นมาเป็นเหตุ และเหตุมาเป็นผล ก็จะได้บทกลับของทฤษฎีบทพีทาโกรัส ดังนี้

บทกลับพีทาโกรัส

ตัวอย่างที่ 1

กำหนดความยาวของด้านทั้งสามของรูปสามเหลี่ยมให้ให้แสดงว่ารูปสามเหลี่ยมนั้นเป็นรูปสามเหลี่ยมมุมฉากหรือไม่

1) 7, 9, 11          2) 8, 15, 17

ตัวอย่างบกลับพีทาโกรัส

ในกรณีที่โจทย์กำหนดความยาวให้ 3 ด้าน และถามว่านำมาประกอบกันเป็นรูปสามเหลี่ยมมุมฉากหรือไม่ ถ้าใช่ยังสามารถตรวจสอบต่อไปได้อีกว่าเป็นรูปสามเหลี่ยมอะไรโดยพิจารณาให้ ดังนี้

ทฤษฎีบทกลับ

และความยาวของด้านทั้งสามต้องสัมพันธ์กันดังนี้คือ c < a + b มิฉะนั้นจะนำมาสร้างรูปสามเหลี่ยมไม่ได้

ตัวอย่างที่ 2

กำหนดความยาวของด้านให้สามด้าน นำมาสร้างรูปสามเหลี่ยมจะได้รูปสามเหลี่ยมอะไร

1) 2, 3,6            2) 3, 4, 5            3) 4 5, 6            4) 5, 6, 8

ตัวอย่างบทกลับพีทาโกรัส

คลิปตัวอย่างเรื่องบทกลับของทฤษฎีบทพีทาโกรัส

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

สถิติ (เส้นโค้งความถี่)

บทความนี้ได้รวบรวมความรู้เรื่อง สถิติ (เส้นโค้งความถี่)  ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง    ค่ากลางของข้อมูล และการวัดการกระจายของข้อมูล สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ สถิติ (ค่ากลางของข้อมูล/การกระจายของข้อมูล) ⇐⇐ เส้นโค้งของความถี่ จะมีอยู่ 3 แบบ คือ เส้นโค้งปกติ เส้นโค้งเบ้ขวา และเส้นโค้งเบ้ซ้าย ซึ่งจะมีความสัมพันธ์กับค่ากลางของข้อมูล  ได้แก่ ค่าเฉลี่ยเลขคณิต (μ)   มัธยฐาน (Med) และฐานนิยม

แผนภูมิแท่ง และการเปรียบเทียบข้อมูล

บทความนี้จะพูดถึงการนำเสนอข้อมูลในรูปแบบของแผนภูมิแท่งไม่ว่าจะเป็นการเปรียบเทียบข้อมูล 2 จำนวน และ 3 จำนวน น้องๆจะสามารถนำข้อมูลที่สำรวจมาเขียนเป็นแผนภูมิแท่งได้และจะง่ายต่อการนำเสนอมากยิ่งขึ้น

comparison of adjectives

Comparison of Adjectives

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ วันนี้เราจะมาทำความรู้จักกับเรื่องของ Comparison of Adjectives ซึ่งจะคืออะไรและเอาไปใช้อะไรได้บ้าง เราลองไปดูกันเลยครับ

คุณค่าในเรื่องพระอภัยมณี มีอะไรบ้าง?

หลังจากที่บทเรียนคราวที่แล้วเราได้เรียนเรื่องประวัติความเป็นมาของวรรณคดีเรื่องสุนทรภู่ไปแล้ว วันนี้เราจะพาน้อง ๆ ไปเรียนรู้ถึง คุณค่าในเรื่องพระอภัยมณี ว่ามีคุณค่าด้านใดบ้าง เพื่อที่น้อง ๆ จะได้รู้เหตุผลว่าทำไมวรรณคดีเรื่องนี้ถึงเป็นเรื่องที่โด่งที่สุดอีกเรื่องหนึ่งของสุนทรภู่ เป็นวรรณคดีที่ดังข้ามเวลาและอยู่ในแบบเรียนภาษาไทย ถ้าพร้อมแล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยค่ะ   คุณค่าในเรื่องพระอภัยมณี     คุณค่าทางด้านวรรณศิลป์   พระอภัยมณีเป็นเรื่องมีรสทางวรรณคดีคือเสาวรจนีย์และสัลปังคพิสัย ดังนี้ เสาวรจนีย์ เป็นบทชมโฉมหรือความงาม พบในตอนที่พระอภัยชมความงามของนางเงือก     2.

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1