ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ตัวผกผันของความสัมพันธ์

ตัวผกผันของความสัมพันธ์ r คือความสัมพันธ์ใหม่ที่เกิดจากการสลับตำแหน่งของสมาชิกตัวหน้ากับสมาชิกตัวหลังของคู่อันดับทุกคู่ในความสัมพันธ์ r เขียนแทนด้วย r^{-1}  ซึ่ง r^{-1} = {(y, x) : (x, y ) ∈ r}

เช่น r = {(1, 2), (3, 4), (5, 6)}

จากคู่อันดับของความสัมพันธ์ r จะได้ว่า D_r = {1, 3, 5} และ R_r = {2, 4, 6}

และจะได้ตัวผกผันของ r คือ r^{-1} = {(2, 1), (4, 3), (6, 5)}

และจาก r^{-1} จะได้ว่า D_{r^{-1}} = {2, 4, 6} = R_r  และ R_{r^{-1}} = {1, 3, 5} = D_r

จะเห็นว่า โดเมนของตัวผกผันของความสัมพันธ์ r คือ เรนจ์ของความสัมพันธ์ r และ เรนจ์ของตัวผกผันของความสัมพันธ์ r คือ โดเมนของความสัมพันธ์ r

 

ตัวอย่าง

1.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : y = 2x +1} จงหา r^{-1}

จาก r^{-1} = {(y, x) : (x, y ) ∈ r}

จะได้  r^{-1} = {(y, x) ∈ \mathbb{R}\times \mathbb{R} : y = 2x +1}

หรือสามารถเขียนได้อีกแบบ คือ r^{-1} = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : x = 2y + 1}  (เปลี่ยน x เป็น y เปลี่ยน y เป็น x คู่อันดับเหมือนเดิม)

จัดสมการใหม่ จาก x = 2y+1 เป็น y=\frac{x-1}{2}

ดังนั้น จะได้ว่า r^{-1} = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : y=\frac{x-1}{2}} (รูปแบบที่นิยมเขียนกันมากที่สุด)

 

2.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : y=\sqrt{x-2}} จงหา r^{-1} พร้อมวาดกราฟของ r^{-1}

ตัวผกผันของความสัมพันธ์

 

นำความสัมพันธ์ดังกล่าวมาวาดกราฟได้ดังนี้ 

ตัวผกผันของความสัมพันธ์

 

3.) ให้ r = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : y=\frac{2}{x-5}} หาตัวผกผันของ r 

จาก r^{-1} = {(y, x) : (x, y ) ∈ r}

เขียนแบบที่1 หน้าเปลี่ยน >> หลัง(เงื่อนไข)เหมือนเดิม

จะได้ r^{-1} = {(y, x) ∈ \mathbb{R}\times \mathbb{R} : y=\frac{2}{x-5}}

เขียนแบบที่ 2 หน้าเหมือนเดิม >> หลัง(เงื่อนไข)เปลี่ยน

จะได้  r^{-1} = {(x, y) ∈ \mathbb{R}\times \mathbb{R} : x=\frac{2}{y-5}}  

 

วิดีโอตัวผกผันของความสัมพันธ์

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

กราฟของความสัมพันธ์

กราฟของความสัมพันธ์ กราฟของความสัมพันธ์ r คือเซตของจุดในระนาบx, y โดยที่แต่ละจุดคือสมาชิกของความสัมพันธ์ r นั่นเอง อธิบายให้เข้าใจง่ายคือ เมื่อเราได้เซตของความสัมพันธ์ r ที่มีสมาชิกในเซตคือคู่อันดับแล้ว เราก็นำคู่อันดับแต่ละคู่มาเขียนกราฟนั่นเอง เช่น r = {(1, 1), (1, 2), (2, 2), (3, 4)} นำมาเขียนกราฟของความสัมพันธ์

มาสำรวจรอบๆโรงเรียนกันดีกว่า: การใช้ There is/There are แบบเข้าใจง่ายๆ

เชื่อว่าช่วงนี้น้องๆ น่าจะเปิดเทอมกันมาได้สักพักนึงแล้ว แล้วน้องๆ เคยมีเวลาไปสำรวจรอบๆ โรงเรียนของเรากันรึยังเอ่ย? วันนี้พี่จะมาบอกประโยคง่ายๆ ที่ใช้พูดเวลาเจอสิ่งที่น่าสนใจรอบๆโรงเรียนของเรากัน

โจทย์ปัญหาการหารทศนิยม

บทความนี้เป็นเรื่องการวิเคราห์โจทย์ปัญหาการหารทศนิยม ซึ่งโจทย์ที่นำมาเป็นตัวอย่างจะประกอบด้วยการวิเคราะห์โจทย์ปัญหา การเขียนประโยคสัญลักษณ์ รวมไปถึงการสดงวิธีทำ หวังว่าน้องๆจะสามารถนำข้อมูลเหล่านี้ไปใช้ได้จริงกับโจทย์ปัญหาในห้องเรียน

มัทนะพาธา

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา ที่มาและเรื่องย่อ

บทละครพูดคำฉันท์เรื่อง มัทนะพาธา เป็นวรรณคดีที่ทรงคุณค่าทางวรรณศิลป์ได้รับการยกย่องว่าแต่งดีและมีความแปลกใหม่อีกเรื่องหนึ่ง น้อง ๆ หลายคนอาจจะเคยคุ้นหูกันมาบ้างตามสื่อต่าง ๆ เพราะวรรณคดีเรื่องนี้เป็นหนึ่งในเรื่องที่โด่งดังจึงมักถูกหยิบไปทำเป็นละครทางโทรทัศน์บ่อย ๆ แต่จะมีความเป็นมาอย่างไรนั้น วันนี้เราจะไปศึกษาเรื่องนี้พร้อมกันเลยค่ะ   ประวัติความเป็นมาของบทละครพูดคำฉันท์เรื่อง มัทนะพาธา     มัทนะพาธาเป็นบทละครพูดคำฉันท์ พระราชนิพนธ์ในพระบาทสมเด็จเพราะมงกุฎเกล้าเจ้าอยู่หัว รัชกาลที่ 6 ทรงมีพระราชกุศลเพื่อสร้าง ตำนานแห่งดอกกุหลาบ จึงทรงผูกเรื่องขึ้นมาใหม่หมด ทรงให้ความสำคัญเรื่องความถูกต้อง และความสมจริงในรายละเอียดของเรื่อง

จำนวนอตรรกยะ

จำนวนอตรรกยะ

ในบทความนี้เราจะได้รู้จักความหมายของจำนวนอตรรกยะ และหลักการของจำนวนอตรรกยะกับการนำไปประยุกต์

causatives

Causatives: Have and Get Something Done

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้ไวยากรณ์เรื่อง Causatives หรือการใช้ Have/Get Something Done ที่น้องๆ บางคนอาจจะสงสัยว่าคืออะไร ลองไปดูกันเลยครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1