ความสัมพันธ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความสัมพันธ์

ความสัมพันธ์ เกิดจากสิ่งสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์บางอย่าง เช่น ความสัมพันธ์ของ a กับ b ซึ่ง a มากกว่า b เป็นต้น

ก่อนที่เราจะเริ่มเนื้อหาของความสำคัญพี่อยากให้น้องๆรู้จักกับคู่อันดับ และผลคูณคาร์ทีเซียนก่อนนะคะ

คู่อันดับ

ในการเขียนคู่อันดับเป็นสิ่งที่ค่อนข้างสำคัญเลยทีเดียว เพราะถ้าน้องๆเขียนคู่อันดับผิดตำแหน่งนั่นหมายความว่า ความหมายของมันจะเปลี่ยนไปทันที

เช่น คู่อันดับ (x, y) โดย x แทนเวลาที่ใช้ในการอ่านหนังสือ y แทนจำนวนหน้าของหนังสือที่อ่านแล้ว เมื่อแทนคู่อันดับด้วย (10, 3) หมายความว่าใช้เวลา 10 นาทีในการอ่านหนังสือ และจำนวนหน้าที่อ่านได้คือ 3 หน้า   แต่! ถ้าน้องเขียนคู่อันดับเป็น (3, 10) จะหมายความว่า ใช้เวลา 3 นาที อ่านหนังสือทั้งหมด 10 หน้า จะเห็นว่าความหมายต่างกันโดยสิ้นเชิง ดังนั้นน้องๆควรดูคู่อันดับให้ดีๆนะคะ

โดยทั่วไปแล้ว เราจะใช้ (x, y) หรือ (a, b) เป็นตัวแปรของคู่อันดับในทางคณิตศาสตร์ โดยที่เราจะเรียก x, a ว่า สมาชิกตัวหน้าของคู่อันดับ และเรียก y, b ว่า สมาชิกตัวหลังของคู่อันดับ

 

บทนิยามของคู่อันดับ

กำหนดให้คู่อันดับ (x, y) ใดๆ จะได้ว่า คู่อันดับ (x, y) = (a, b) เมื่อ x = a และ y = b

อธิบายให้เข้าใจก็คือ คู่อันดับ 2 คู่จะเท่ากันได้ สมาชิกตัวหน้าของทั้งสองคู่อันดับจะต้องเท่ากัน และ สมาชิกตัวหลังของคู่อันดับก็ต้องเท่ากันด้วย

เช่น

  1. (x, -5) = (6, y) จะได้ว่า x = 6 และ y = -5
  2. (5x, y + 2) = (10, 3x)

ความสัมพันธ์

 

ผลคูณคาร์ทีเซียน

นิยาม ผลคูณคาร์ทีเซียนของเซต A และ B คือ {(a, b) : a ∈ A และ b ∈ B} เขียนแทนด้วย A × B

แปลให้เข้าใจง่าย ผลคูณคาร์ทีเซียนก็คือ คู่อันดับเซตใหม่ที่เกิดจากการเอาสมาชิกใน A และ B มาจับคู่กัน โดยสมาชิกตัวหน้ามาจาก A และสมาชิกตัวหลังมาจาก B

ตัวอย่าง A = {1, 2, 3}  B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

B × B ={(a, a), (a, b), (b, a), (b, b)}

เราสามารถหาจำนวนคู่อันดับผลคูณคาร์ทีเซียนได้ ด้วยสูตร n(A×B) = n(A) × n(B)

จะได้ว่า n(A×A) = 3 × 3 = 9      n(A×B) = 3 × 2 = 6     n(B×B) = 2 × 2 = 4

ความสัมพันธ์

บทนิยามของความสัมพันธ์

ให้ A และ B เป็นเซตใดๆ เราจะบอกว่า r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A × B

หมายความว่า คู่อันดับใดๆใน r จะเป็นความสัมพันธืจาก A ไป B ก็ต่อเมื่อ เซตของคู่อันดับเหล่านั้นเป็นสับเซตของผลคูณคาร์ทีเซียน A × B นั่นเอง

เช่น  A = {1, 2, 3}  B = {a, b}

จะได้ว่า  A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

r_{1} = {(1, a), (2, b), (3, b)} เป็นความสัมพันธ์จาก A ไป B เพราะ {(1, a), (2, b), (3, b)} ⊂ A × B

r_2 = {(1, a), (1, b), (2, a), (1, 1)} ไม่เป็นความสัมพันธ์จาก A ไป B เพราะ (1, 1) ไม่เป็นสมาชิกของ A × B นั่นคือ {(1, a), (1, b), (2, a), (1, 1)} ⊄ A × B

ความสัมพันธ์ r ข้างต้นเป็นการเขียนความสัมพันธ์แบบแจกแจงสมาชิก 

 

การเขียนความสัมพันธ์ r แบบบอกเงื่อนไข

 

ให้ A = {1, 2, 3}  B = {1, 2}  และความสัมพันธ์ r = {(x, y) ∈ B × A : x < y}

เราจะได้ B × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

จากเงื่อนไข x < y

ให้เราพิจารณาว่าจากผลคูณคาร์ทีเซียนข้างต้นกว่า มีคู่ไหนตรงตามเงื่อนไขบ้าง

จะได้คู่อันดับ ดังนี้  (1, 2), (1, 3), (2, 3) ดังนั้นจะได้ว่า r = {(1, 2), (1, 3), (2, 3)}

ทำไมถึงต้องพิจารณาเงื่อนไขจากผลคูณคาร์ทีเซียน?

เพราะว่า r นั้นเป็นคู่อันดับที่เป็นสมาชิกของ B × A นั่นเอง

และเรายังได้อีกว่า r เป็นความสัมพันธ์จาก B ไป A

 

เรามาดูตัวอย่างอีกหนึ่งข้อกันค่ะ

ให้ A ={1, 2, 4, 5}   B = {1, 2, 5} และให้ r = {(x, y) ∈ A × B : 2x < y}

จะเขียนคู่อันดับของ r

ความสัมพันธ์

วิดีโอเรื่อง ความสัมพันธ์

 

 

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาแผนภูมิรูปวงกลม

ในบทความนี้เราจะได้เรียนรู้หลักการแก้โจทย์ปัญหาแผนภูมิรูปวงกลมที่จะนำไปใช้ได้ในชีวิตประจำวนและสามารถเข้าใจได้ง่าย

โคลงสี่สุภาพ เจาะลึกคำประพันธ์ที่กวีนิยมแต่งมากที่สุด

  โคลงสี่สุภาพ เป็นคำประพันธ์ประเภทหนึ่งของบทร้อยกรองที่กวีนิยมนำไปใช้กันมากมาย บทเรียนวันนี้ จะพาน้อง ๆ ไปเรียนรู้เรื่องของโคลงสี่สุภาพ ว่ามีฉันทลักษณ์และลักษณะคำประพันธ์อย่างไร ทำไมถึงได้รับความนิยมในหมู่กวี ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   โคลงสี่สุภาพคืออะไร     โคลง เป็นคำประพันธ์ที่มีการเรียบเรียงถ้อยคำเป็นคณะ มีกำหนดเอกโทและสัมผัส ส่วนสุภาพ หรือเสาวภาพ หมายถึงคำที่ไม่มีวรรณยุกต์ โคลงสี่สุภาพปรากฏในวรรณคดีไทยตั้งแต่สมัยอยุธยา โดยโคลงที่มีชื่อเสียงและได้รับการยกย่องว่าแต่งดี ยอดเยี่ยม

โจทย์ปัญหาสัดส่วน 2

บทความนี้น้องๆจะได้เรียนรู้หลักการที่ใช้ในการแก้โจทย์ปัญหาสัดส่วนด้วยวิธีการที่หลากหลายและเข้าใจง่าย สามารถนำไปช่วยในแก้โจทย์ปัญหาในห้องเรียนของน้องๆได้

การเขียนแนะนำความรู้

เขียนแนะนำความรู้อย่างไรให้น่าอ่าน แค่ทำตามหลักการต่อไปนี้

บทนำ สวัสดีน้อง ๆ ทุกคน ยินดีต้อนรับเข้าสู่บทเรียนภาษาไทย วันนี้เราได้เตรียมสาระความรู้เกี่ยวกับหลักการเขียนมาให้น้อง ๆ ได้นำไปใช้ประโยชน์กัน โดยเนื้อหาที่เราจะมาเรียนในวันนี้จะเป็นเรื่องของการเขียนเพื่อแนะนำความรู้ ความเข้าใจให้กับผู้อ่าน ซึ่งเราจะมาทำความเข้าใจหลักการง่าย ๆ ที่จะนำไปใช้ในการเขียนให้ความรู้ผู้อื่น โดยที่น้อง ๆ สามารถนำไปใช้ในการเรียนวิชาอื่น ๆ ได้ หรือใช้กับการเรียนในระดับที่สูงขึ้นได้เลย เป็นพื้นฐานการเขียนที่เด็ก ๆ ทุกคนควรได้รับการฝึกฝนจะได้นำไปเขียนได้อย่างถูกต้อง ถ้าพร้อมแล้วเราไปเข้าสู่บทเรียนวันนี้กันเลยดีกว่า    

should have

I Should Have Done It! โครงสร้างประโยค “รู้งี้”

สวัสดีน้องๆ ม. 6 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับหลักไวยากรณ์เล็กๆ น้อยๆ ที่ได้ใช้ประโยชน์มากๆ นั่นคือเรื่องการใช้ should have + past participle นั่นเองครับ จะเป็นอย่างไรลองไปดูกันเลยครับ

โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว

บทความนี้ได้รวบรวม โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว ไว้หลากหลายตัวอย่าง ซึ่งแสดงวิธีคิดอย่างละเอียด สามารถเรียนรู้และเข้าใจได้ง่าย แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อโจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ ในการแก้ โจทย์ปัญหาเกี่ยวกับอสมการเชิงเส้นตัวแปรเดียว จะต้องใช้สัญลักษณ์ของอสมการแทนคำเหล่านี้ <   แทนความสัมพันธ์น้อยกว่า หรือไม่ถึง >   แทนความสัมพันธ์มากกว่า หรือเกิน ≤   แทนความสัมพันธ์น้อยกว่าหรือเท่ากับ หรือไม่เกิน ≥  แทนความสัมพันธ์มากกว่าหรือเท่ากับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1