ความยาวรอบรูปเเละพื้นที่ของวงกลม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความยาวรอบรูปเเละพื้นที่ของวงกลม

ความยาวรอบรูปของวงกลม หรือเรียกว่า ความยาวเส้นรอบวงของวงกลม คือ ความยาวของเส้นรอบวงกลมสามารถคำนวณได้ ดังนี้

C = 2\pi r

โดย:  C        คือ ความยาวของเส้นรอบวง (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

π         คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ 3.14

r         คือ รัศมีของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

พื้นที่ของวงกลม คือ พื้นที่ทั้งหมดที่อยู่ภายในขอบเขตของเส้นรอบวง ซึ่งสามารถคำนวณได้ดังนี้

A = \pi r^{2}

โดย:  A        คือ พื้นที่ของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)

π        คือ อัตราส่วนระหว่างเส้นรอบวงกับรัศมี มีค่าประมาณ 22/7 หรือ 3.14

r         คือ รัศมีของวงกลม (หน่วยเป็น เมตร, เซนติเมตร, มิลิเมตร เป็นต้น)


ตัวอย่างโจทย์ความยาวรอบรูปเเละพื้นที่ของวงกลม

ตัวอย่างที่ 1 จงหาความยาวของเส้นรอบวงของวงกลมต่อไปนี้ (กำหนดให้ π = 22/7)

วิธีทำ
2πr = 2 x (22/7) x 28    (ตัด 28 กับ 7)
        = 2 x 22 x 4
        = 176 เมตร

ตอบ เส้นรอบวงยาว 176 เมตร

 

 

ตัวอย่างที่ 2 จงหาความยาวรอบสนามเด็กเล่นของโรงเรียนเเมวน้ำวิทยา เเละพื้นที่ของสนามเด็กเล่น (กำหนดให้ π = 3.14 )

วิธีทำ จากรูปจะสังเกตได้ว่าโจทย์ให้เส้นผ่านศูนย์กลางมา ซึ่งรัศมีจะมีขนาดเป็นครึ่งหนึ่งของเส้นผ่านศูนย์กลาง
ดังนั้น รัศมี = 50 เมตร
ความยาวรอบวงของวงกลมมีค่า
2πr = 2 x 3.14 x 50
       = 314 เมตร

 

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 50 x 50

= 7850 ตารางเมตร

ตอบ ความยาวรอบสนามเด็กเล่นมีค่า 314 m. เเละมีพื้นที่ 7850 ตารางเมตร

ตัวอย่างที่ 3 วงกลมวงหนึ่งมีเส้นรอบวงยาว 94.2 มิลลิเมตร วงกลมนี้จะมีรัศมียาวเท่าใด เเละมีพื้นที่เท่าใด (กำหนดให้ π = 3.14)

ความยาวเส้นรอบวง = 2πr

94.2     = 2 x 3.14 x r

94.2     = 6.28 x r

ย้ายข้าง 6.28 ไปหา 94.2 เพื่อหาค่า r

94.2/6.28 = r

ดังนั้น           r = 15 มิลลิเมตร

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 15 x 15

= 706.5 ตารางมิลลิเมตร

ตอบ รัศมีของวงกลมยาว 15 มิลลิเมตร เเละมีพื้นที่ 706.5 ตารางมิลลิเมตร

ตัวอย่างที่ 4 จงหาความยาวของเส้นรอบวงเเละพื้นที่ของวงกลมที่อยู่เเนบชิดในสี่เหลี่ยมจตุรัสที่มีพื้นที่ภายในสี่เหลี่ยมจตุรัสเท่ากับ 100 ตารางเซนติเมตร (กำหนดให้ π = 3.14)

วิธีทำ สร้างรูปวงกลมที่อยู่ในสี่เหลี่ยมขึ้นมาได้ดังนี้

จากภาพที่สร้างขึ้นจะเห็นได้ว่าความยาวเส้นผ่านศูนย์กลางของวงกลมมีขนาดเท่ากับความยาวด้านของสี่เหลี่ยมจตุรัส

 

 

ดังนั้น พื้นที่ของสี่เหลี่ยมจตุรัส = ความยาวด้าน x ความยาวด้าน

100 ตร.ซม.          = d x d   (กำหนดให้ d = ความยาวด้านของสี่เหลี่ยม)
100 ตร.ซม.          = d^{2}

จะเห็นได้ว่าพื้นที่ของสี่เหลี่ยมจตุรัสมีค่าเท่ากับ 100 ตร.ซม. ซึ่ง 100 เท่ากับ 10 x 10
ดังนั้น ความยาวด้านของสี่เหลี่ยมจตุรัส = 10 เซนติเมตร
เเสดงว่าความยาวเส้นผ่านศูนย์กลางของวงกลม = 10 เซนติเมตร
เเละรัศมีของวงกลม = 5 เซนติเมตร

ความยาวเส้นรอบวงของวงกลม = 2πr

= 2 x 3.14 x 5

= 31.4 เซนติเมตร

พื้นที่ของวงกลม = \pi r^{2}

= 3.14 x 5 x 5

= 78.5 ตารางเซนติเมตร

ตอบ ความยาวเส้นรอบวงของวงกลมมีค่า 31.4 เซนติเมตร เเละพื้นที่ 78.5 ตารางเซนติเมตร

หากน้อง ๆ สามารถคำนวณความยาวรอบรูปเเละพื้นที่ของวงกลมได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคต น้องสามารถศึกษาการหา ความยาวรอบรูปเเละพื้นที่วงกลม เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ความยาวรอบรูปเเละพื้นที่วงกลม

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ความยาวรอบรูปเเละพื้นที่วงกลม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การเขียนบรรยาย

การเขียนบรรยาย อธิบาย พรรณนา เรียนรู้ 3 การเขียนที่สำคัญในยุคปัจจุบัน

ทักษะการเขียนอธิบาย การเขียนบรรยาย และการเขียนพรรณนา ถือว่ามีความสำคัญอย่างมากในปัจจุบัน เพราะมนุษย์นั้นมีสัญชาตญาณในการอยากรู้และหาคำตอบ ดังนั้นเราจึงไม่อาจเลี่ยงตอบคำถามใครได้ ดังนั้นการตอบคำถามหรือทำให้ผู้รับสารเข้าใจตรงกันจึงเป็นสิ่งจำเป็น บทเรียนวันนี้เราจะมาเรียนรู้เทคนิคการเขียนทั้งสามแบบว่ามีวิธีการเขียนอย่างไร ถ้าพร้อมแล้วเราไปเรียนรู้พร้อมกันเลยค่ะ   การเขียน   การเขียนอธิบาย   การเขียนอธิบาย หมายถึง การทำให้บุคคลอื่นเข้าใจในความจริงที่เกิดขึ้น มีกลวิธีการเขียนดังนี้ กลวิธีการเขียนอธิบาย 1. การอธิบายตามลำดับขั้น เป็นอธิบายไปทีละขั้นตอน ใช้ในการเขียนอธิบายถึงกิจกรรมหรือวิธีทำบางสิ่งบางอย่าง    

คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ พูดอย่างไรให้ถูกต้อง

  คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ถือเป็นเรื่องสำคัญ ที่น้อง ๆ หลายคนอาจจะต้องพบเจอถ้าหากว่านับถือศาสนาพุทธ เพราะว่าเราอาจมีโอกาสได้สนทนากับพระระหว่างทำบุญก็ได้ วันนี้เราจะมาเรียนรู้คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์กันนะคะว่าแตกต่างจากคำราชาศัพท์สำหรับราชวงศ์และสุภาพชนทั่วไปอย่างไร ไปเรียนรู้พร้อม ๆ กันเลยค่ะ   คำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์ ใช้อย่างไร     แม้คำว่าราชาศัพท์ จะสามารถแปลตรงตัวได้ว่าเป็นถ้อยคำที่ใช้กับพระมหากษัตริย์ แต่ในปัจจุบันนี้คำราชาศัพท์ยังครอบคลุมไปถึงพระบรมวงศานุวงศ์ พระภิกษุสงฆ์ และสุภาพชน หรือเรียกอีกนัยว่าคำสุภาพ สำหรับคำราชาศัพท์ที่ใช้กับพระภิกษุสงฆ์จะต่างกับราชวงศ์และสุภาพชน และยังขึ้นอยู่กับสมณศักดิ์ของพระสงฆ์อีกด้วย โดยสามารถเรียงลำดับได้ดังนี้

ศึกษาประวัติความเป็นมาและเรื่องย่อของเรื่องราชาธิราช ตอน สมิงพระรามอาสา

ราชาธิราช เป็นวรรณคดีประเภท พงศาวดาร ที่มีการแปลมาจากพงศาวดารมอญ น้อง ๆ หลายคนคงจะทราบกันดีอยู่แล้วว่าพงศาวดารก็คือเรื่องราวหรือเหตุการณ์ที่เกี่ยวกับประเทศชาติหรือพระมหากษัตริย์ แต่ทราบกันหรือไม่คะว่าทำไมในแบบเรียนภาษาไทยของเรานั้นถึงต้องเรียนเรื่องราชาธิราช ที่เป็นพงศาวดารมอญด้วย วันนี้เราจะพาน้อง ๆ ทุกคนไปเรียนรู้ประวัติความเป็นมาของเรื่องราชาธิราชรวมไปถึงเรื่องย่อ ซึ่งในบทที่เราจะเรียนนี้คือตอน สมิงพระรามอาสา เรื่องราวจะเป็นอย่างไรบ้าง ไปศึกษาเรื่องนี้พร้อม ๆ กันเลยค่ะ   ราชาธิราช   ประวัติความเป็นมา     ราชาธิราชเป็นวรรณคดีร้อยแก้วที่พระบาทสมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราชโปรดเกล้าฯ

สมบัติของรูปสามเหลี่ยมมุมฉาก

สมบัติของรูปสามเหลี่ยมมุมฉาก

ในบทความนี้นักเรียนจะได้เรียนรู้สมบัติของรูปสามเหลี่ยมมุมฉากที่ทำให้เข้าใจง่ายและมีวิธีในการวิเคราะห์โจทย์ที่หลากหลาย

เมทริกซ์

เมทริกซ์ และเมทริกซ์สลับเปลี่ยน

เมทริกซ์ เมทริกซ์ (Matrix) คือตารางสี่เหลี่ยมที่บรรจุตัวเลขหรือตัวแปร สามารถนำมาบวก ลบ คูณกันได้ เราสามารถใช้เมทริกซ์ในการการแก้ระบบสมการเชิงเส้นได้ซึ่งจะสะดวกกว่าการแก้แบบกำจัดตัวแปรสำหรับสมการที่มากกว่า 2 ตัวแปร ตัวอย่างการเขียนเมทริกซ์ เรียกว่าเมทริกซ์มิติ 3×3 ซึ่ง 3 ตัวหน้าคือ จำนวนแถว 3 ตัวหลังคือ จำนวนหลัก ซึ่งเราจะเรียกแถวในแนวนอนว่า แถว และเรียกแถวในแนวตั้งว่า หลัก และจากเมทริกซ์ข้างต้นจะได้ว่า

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1