ความน่าจะเป็นของเหตุการณ์

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

ความน่าจะเป็นของเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นของเหตุการณ์ ซึ่งได้กล่าวถึงขั้นตอนและวิธีการหาความน่าจะเป็นของเหตุการณ์ และยกตัวอย่างประกอบ อธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง ความน่าจะเป็นของเหตุการณ์น้องๆสามารถทบทวน การทดลองสุ่มและเหตุการณ์ ได้ที่  ⇒⇒ การทดลองสุ่มและเหตุการณ์ ⇐⇐

ความน่าจะเป็นของเหตุการณ์ (probability) คือ  อัตราส่วนระหว่างจำนวนเหตุการณ์ที่สนใจ (n(E)) กับจำนวนแซมเปิลสเปซ (n(S)) ที่มีโอกาสเกิดขึ้นได้พร้อม ๆ กัน ใช้สัญลักษณ์ “P(E)”  แทนความน่าจะเป็นของการเกิดเหตุการณ์ที่สนใจ

โดยที่  n(E)  แทน  จำนวนผลลัพธ์ทั้งหมดของเหตุการณ์ที่เราสนใจ

                       n(S)  แทน  จำนวนผลลัพธ์ทั้งหมดที่จะเกิดขึ้นได้

  P(E)  แทน ความน่าจะเป็นของเหตุการณ์

ดังนั้น   P(E)   =  \frac{n(E)}{n(S)}

ข้อควรจำ

  1. 0 ≤ P(E) ≤ 1
  2. ถ้า P(E) = 0  เหตุการณ์นั้นๆ จะไม่มีโอกาสเกิดขึ้นเลย
  3. ถ้า P(E) = 1  เหตุการณ์นั้นๆ เกิดขึ้นแน่นอน

ตัวอย่างที่ 1

ตัวอย่างที่ 1 จากการโยนลูกเต๋า 2 ลูก  1 ครั้ง  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

วิธีทำ  หา S จากการทอดลูกเต๋า 2  ลูก 1 ครั้ง ได้ดังนี้

S  =  { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

            (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

                      (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

n(S)  =  36

1) เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

อธิบายเพิ่มเติม : ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 หมายความว่า เมื่อนำแต้มของลูกเต๋า 2 ลูกมาบวกกัน แล้วได้ผลลัพธ์เท่ากับ 11 และมากกว่า 11

ให้ E1 แทน เหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11

E1           =    { (5, 6) , (6, 5 ) , ( 6, 6) }

n (E1)     =    3

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{3}{36} = \frac{1}{12}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มมากกว่าหรือเท่ากับ 11 เท่ากับ \frac{1}{12}

2) เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

อธิบายเพิ่มเติม : ผลรวมของแต้มเป็นจำนวนคู่ จะต้องเกิดจากแต้มคี่ทั้งสองลูกและแต้มคู่ทั้งสองลูก

ให้ E2 แทน เหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่

E2  =  { (1,1) , (1,3) , (1,5) , (2,2) , (2,4) , (2,6) , (3,1) , (3,3) , (3,5) , (4,2) , (4,4) , (4,6) ,

                         (5,1) ,(5,3) ,(5,5),(6,2) ,(6,4) ,(6,6) }

n(E2)   =  18

P(E2)   =  \frac{18}{36}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ได้ผลรวมของแต้มเป็นจำนวนคู่ เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

อธิบายเพิ่มเติม : ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก หมายความว่า ขึ้นแต้ม 1 หนึ่งลูกหรือสองลูกก็ได้

ให้ E3  แทน เหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก

E3           =   { (1,1) ,(1,2) ,((1,3) ,(1,4) ,(1,5) ,(1,6) ,(2,1) ,(3,1) ,(4,1) ,(5,1) ,(6,1) }

n(E3)      =   11

P(E3)      =  \frac{11}{36}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ลูกเต๋าขึ้นแต้ม 1  อย่างน้อยหนึ่งลูก เท่ากับ \frac{11}{36}

ตัวอย่างที่ 2

ตัวอย่างที่ 2    ครอบครัวครอบครัวหนึ่ง  มีบุตร 2 คน  จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

วิธีทำ     ให้         ช  แทน บุตรชาย

       ญ  แทน บุตรหญิง

  S =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

   n(S) = 4

โดยที่  สมาชิกตัวแรกของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนแรก และสมาชิกตัวที่สองของคู่อันดับแสดงผลลัพธ์ที่อาจจะเกิดขึ้นได้ของการมีบุตรคนที่สอง

1) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

ให้ E1 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง

E1 = {(ช, ญ)}

n (E1)     =    1

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{1}{4}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรคนแรกเป็นชาย บุตรคนที่สองเป็นหญิง เท่ากับ \frac{1}{4}

2) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

ให้ E2 แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน

E2  =  { (ช, ญ) , (ญ, ช)) }

n(E2)   =  2

P(E2)   =  \frac{2}{4}  =  \frac{1}{2}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นหญิง 1 คน เท่ากับ \frac{1}{2}

3) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน

เนื่องจากครอบครัวนี้มีบุตรเพียง 2 คนเท่านั้น เหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน จึงเป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรเป็นชาย 3 คน เท่ากับ 0

4) เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

ให้ E3  แทน เหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้

E3           =  {(ช, ช), (ช, ญ), (ญ, ช), (ญ, ญ)}

n(E3)      =   4

P(E3)      =  \frac{4}{4} = 1

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่ครอบครัวนี้จะมีบุตรทั้งสองคนเป็นชายหรือหญิงก็ได้  เท่ากับ  1

ตัวอย่างที่ 3

ตัวอย่างที่ 3    โยนเหรียญ 1 เหรียญ 3 ครั้ง จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

วิธีทำ  ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มนี้มี 8 แบบ ดังนี้

ความน่าจะเป็นของเหตุการณ์ 3

  S =  {HHH, HHT, HTH, HTT, THH, THT, TTH , TTT}

  n(S) = 8

1) เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

ให้ E1 แทน เหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย

E1 = {HHH, HHT, HTH , THH}

n (E1)     =    4

P (E1)     =    \frac{n(E_{1})}{n(S)}  = \frac{4}{8}\frac{1}{2}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวมากกว่าออกก้อย เท่ากับ \frac{1}{2}

2) เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

ให้ E2 แทน เหตุการณ์ที่เหรียญออกก้อยติดต่อกัน

E2  =  { HTT, TTH , TTT }

n(E2)   =  3

P(E2)   =  \frac{3}{8}

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกก้อยติดต่อกัน เท่ากับ  \frac{3}{8}

3) เหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ

อธิบายเพิ่มเติม : เหรียญออกหัวอย่างน้อยหนึ่งเหรียญ  หมายความว่า เหรียญออกหัวหนึ่งเหรียญ สองเหรียญหรือสามเหรียญก็ได้

ให้ E3  แทน เหตุการณ์ที่ออกหัวอย่างน้อย 1 เหรียญ

E3           =  {HHH, HHT, HTH, HTT, THH, THT , TTH}

n(E3)      =   7

P(E3)      =  \frac{7}{8}

ดังนั้น  ความน่าจะเป็นของเหตุการณ์ที่เหรียญออกหัวอย่างน้อย 1 เหรียญ เท่ากับ  \frac{7}{8}

ตัวอย่างที่ 4

ตัวอย่างที่ 4  สุ่มหยิบลูกบอล 1 ลูก  จากกล่องที่มีลูกบอลสีขาว 5 ลูก จงหาความน่าจะเป็นของเหตุการณ์ต่อไปนี้

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

วิธีทำ     กำหนดให้  ข₁, ข₂, ข₃, ข₄  และ ข₅  แทนลูกบอลสีขาวทั้ง 5 ลูก

ผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้จากการทดลองสุ่มมี 5 แบบ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

นั่นคือ จำนวนผลลัพธ์ทั้งหมดที่อาจจะเกิดขึ้นได้ เท่ากับ 5  หรือ  n(S) = 5

1) เหตุการณ์ที่หยิบได้ลูกบอลสีขาว

เหตุการณ์ที่หยิบได้ลูกบอลสีขาว มีผลลัพธ์ คือ ข₁, ข₂, ข₃, ข₄  หรือ ข₅ 

จะได้  จำนวนผลลัพธ์ของเหตุการณ์เป็น 5   หรือ  n(E) = 5

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีขาว เท่ากับ  \frac{5}{5} = 1  หรือ P(E) = 1

2) เหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน

เนื่องจากไม่มีลูกบอลสีน้ำเงินอยู่ภายในกล่อง

จะได้  จำนวนผลลัพธ์ที่หยิบได้ลูกบอลสีน้ำเงิน เป็น 0

ดังนั้น ความน่าจะเป็นของเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงิน เท่ากับ 0

จาก ตัวอย่างที่ 4 จะสังเกตเห็นว่าเหตุการณ์ที่หยิบได้ลูกบอลสีขาวเป็น เหตุการณ์ที่เกิดขึ้นแน่นอน มีความน่าจะเป็นของเหตุการณ์ เท่ากับ 1 และเหตุการณ์ที่หยิบได้ลูกบอลสีน้ำเงินเป็น เหตุการณ์ที่ไม่เกิดขึ้นแน่นอน มีความน่าจะเป็น เท่ากับ 0

วิดีโอ ความน่าจะเป็นของเหตุการณ์

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

นิราศภูเขาทอง ศึกษาตัวบทที่น่าสนใจและคุณค่าที่แฝงอยู่ในเรื่อง

  นิราศภูเขาทองเป็นหนึ่งในนิราศที่ได้รับการยกย่องว่าแต่งดีของสุนทรภู่ เป็นงานอันทรงคุณค่าที่ใช้เป็นแบบเรียนภาษาไทยในปัจจุบัน เรามาถอดคำประพันธ์ตัวบทที่น่าสนใจในนิราศภูเขาทองกันดีกว่าค่ะว่ามีบทไหนที่เด่น ๆ ควรศึกษาและจดจำไว้เพื่อไม่ให้พลาดในการทำข้อสอบ ถอดคำประพันธ์ นิราศภูเขาทอง   เนื่องจากนิราศภูเขาทองมีหลายบท ในที่นี้จะเลือกเฉพาะบทที่เด่น ๆ มาศึกษากันนะคะ เราไปดูกันที่บทแรกเลยค่ะ   ถอดคำประพันธ์ บทนี้เป็นการเปรียบเทียบการดื่มเหล้ากับความรัก เหล้าเป็นอบายมุข เมื่อดื่มเข้าไปจะทำให้มีอาการมึนเมา สติสัมปชัญญะไม่ครบถ้วน แต่เมื่อเวลาผ่านไปอาการมึนเมาเหล่านั้นก็จะหายไป แต่หากหลงมัวเมาอยู่กับความรัก ไม่ว่าจะใช้เวลาเท่าไหร่ก็หายไปง่าย ๆ  

การทดลองสุ่มและเหตุการณ์

บทความนี้ได้รวบรวมความรู้เรื่อง การทดลองสุ่มและเหตุการณ์ ซึ่งได้กล่าวถึงในลักษณะของความหมายและยกตัวอย่างประกอบ และอธิบายอย่างละเอียด ซึ่งก่อนจะเรียนเรื่อง การทดลองสุ่มและเหตุการณ์ น้องๆสามารถทบทวน ความน่าจะเป็น ได้ที่  ⇒⇒ ความน่าจะเป็น ⇐⇐ การทดลองสุ่ม การทดลองสุ่ม  คือ การทดลองซึ่งทราบว่าผลลัพธ์ที่จะเกิดขึ้นอาจจะเป็นอะไรได้บ้าง  แต่ไม่สามารถบอกได้อย่างถูกต้องแน่นอนว่าในแต่ละครั้งที่ทำการทดลอง  ผลที่เกิดขึ้นจากการทดลองจะเป็นอะไรในบรรดาผลลัพธ์ที่อาจเป็นไปได้เหล่านั้น  เช่น การโยนเหรียญซึ่งมีผลลัพธ์ที่จะเกิดขึ้นได้ 2 แบบ คือ หัวหรือก้อย เมื่อโยนเหรียญ

Profile of Signal Words

การใช้ Signal Words ในภาษาอังกฤษ

  บทนำ   สวัสดีค่ะนักเรียน ม.1 ทุกคน วันนี้ครูมีเทคนิคที่จะทำให้ทุกคนนำไปปรับใช้กับงานเขียนด้วยการใช้ คำลำดับความสำคัญ (Signal Words) ในภาษาอังกฤษกันค่ะ โดยปรกติแล้วงานเขียนแบ่งออกออกเป็นสองรูปแบบหลักๆคือ เรียงความ (Essay Writing) กับ พารากราฟ (Paragraph Writing) ขอสรุปสั้นๆง่ายๆ ให้ทุกคนเข้าใจว่า Essay คือเรียงความเพราะฉะนั้นจะยาวกว่า Paragraph ที่เป็นเพียงย่อหน้าหนึ่งเท่านั้นนั่นเองค่ะ

การออกเสียงพยัญชนะไทย-01

เสียงพยัญชนะไทย ออกเสียงอย่างไรให้ถูกต้อง

  เชื่อว่าน้อง ๆ หลายคงเคยสงสัยเรื่องการออกเสียงพยัญชนะไทยกันไม่มากก็น้อย เพราะพยัญชนะในภาษาไทยของเรานั้นมีด้วยกัน 44 ตัว แต่กลับมีหน่วยเสียงเพียงครึ่งเดียวเท่านั้น ทำไมการออกเสียงพยัญชนะไทยถึงไม่สามารถออกเสียงตามรูปอักษรทั้ง 44 รูปได้? ไหนจะพยัญชนะท้ายที่เขียนอีกอย่างแต่ดันออกเสียงไปอีกอย่าง บทเรียนในวันนี้จะช่วยไขข้อข้องใจให้กับน้อง ๆ หรือคนที่กำลังสับสนเรื่องการออกเสียงพยัญชนะไทย ให้กระจ่างและสามารถออกเสียงได้อย่างถูกต้อง ดังนั้น เราไปเรียนรู้เรื่องนี้พร้อม ๆ กันเลยค่ะ     เสียงพยัญชนะไทย เสียงพยัญชนะ คือ

วงกลม

วงกลม

วงกลม วงกลม ประกอบด้วยจุดศูนย์กลาง (center) เส้นผ่านศูนย์กลาง และรัศมี (radius) สมการรูปแบบมาตรฐานของวงกลม สมการรูปแบบมาตรฐานของวงกลมที่มีจุดศูนย์กลางที่ (h, k) คือ (x-h)² + (y-k)² = r² จากสมการ จะได้ว่า มีจุดศูนย์กลางที่ (h, k) และรัศมี r จะเห็นว่าถ้าเรารู้สมการมาตรฐานเราจะรู้รัศมี

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1