การหมุน

การแปลงทางเรขาคณิตโดยการหมุน ( Rotation ) เป็นการแปลงที่จุดทุกจุดของรูปต้นแบบเคลื่อนที่ไปเป็นมุมเดียวกันรอบจุดตรึงอยู่กับที่ ที่กำหนดหรือจุดหมุน การหมุนจะหมุนทวนเข็มนาฬิกาหรือตามเข็มนาฬิกา

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การหมุนเช่นเดียวกับการที่เราเคลื่อนที่ของสิ่งของโดยการหมุนไปในทิศทางตามเข็มนาฬิกาหรือทวนเข็มนาฬิกา

รูปแบบการหมุน

การหมุนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีจุด O ที่ตรึงจุดหนึ่งเป็นจุดหมุนแต่ละจุด P บนระนาบมีจุด P เป็นภาพที่ได้จากการหมุนจุด P รอบจุด O ตามทิศทางที่กำหนดด้วยมุมที่มีจุดขนาด k โดยที่

  1. ถ้าจุด P ไม่ใช่จุด O แล้ว OP = OP’ และขนาดของ PÔP’ = k
  2. ถ้าจุด P เป็นจุดเดียวกันกับจุด O แล้ว P เป็นจุดหมุน

ตัวอย่างภาพที่เกิดจากการหมุน

หมุนตามเข็ม

สมบัติการหมุน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการหมุนได้สนิทโดยไม่ต้องพลิกรูปหรือกล่าวได้ว่ารูปต้นแบบกับภาพที่ได้จากการหมุนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการหมุนส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. จุดบนรูปต้นแบบและภาพที่ได้จากการหมุนจุดนั้นแต่ละคู่จะอยู่บนวงกลมที่มีจุดหมุนเป็นจุดศูนย์กลางเดียวกัน แต่วงกลมเหล่านี้ไม่จำเป็นต้องมีรัศมียาวเท่ากัน

การพิจารณาว่ารูปที่กำหนดให้เป็นผลจากการหมุนรูปอีกรูปหนึ่งหรือไม่สามารถพิจารณาตามเงื่อนไข 2 ข้อคือ

  1. สามารถเลื่อนรูปหนึ่งไปทับอีกรูปหนึ่งได้สนิทโดยไม่ต้องมีการพลิกรูป
  2. สามารถหาจุดหมุนทิศทางการหมุนและขนาดของมุมที่หมุนได้

       ถ้าผลจากการแปลงสอดคล้องกับเงื่อนไขทั้งสองข้อแล้วการแปลงนั้นจัดเป็นการหมุนถ้าไม่สอดคล้องกับข้อใดข้อหนึ่งถือว่าไม่ใช่การหมุน

การหาภาพจากการหมุน

ตัวอย่างที่ 1 การหาภาพของ สามเหลี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ในรูปสามเหลี่ยมไปการหาภาพจากการหมุน 90°ทิศตามเข็มนาฬิกา

ภาพการหมุน

ตัวอย่างที่ 2 การหาภาพของ สามเหี่ยมABC ที่เกิดจากการหมุนรอบจุด O ซึ่งไม่อยู่ใน สามเหลี่ยมABC โดยหมุนไป 180°ทิศตามเข็มนาฬิกา

ตัวอย่างการหมุน

ตัวอย่างที่ 3 การหาภาพการหมุน สามเหลี่ยมABC รอบจุด A ทิศตามเข็มนาฬิกาไป 90°ทิศตามเข็นนาฬิกา

การหาจุดหมุนและทิศทางการหมุน

ตัวอย่าง กำหนด สามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการหมุน สามเหลี่ยมABC จงหาจุดหมุนและทิศทางการหมุน

แนวคิด การหาจุดหมุนทำได้โดยการสร้างเส้นตรงสองเส้นให้แต่ละเส้นตั้งฉากกันและแบ่งครึ่งซึ่งกันและกันกับส่วนของเส้นตรงที่เชื่อมระหว่างจุดที่สมนัยกันบนรูปต้นแบบและบนภาพที่ได้จากการหมุนจุดตัดของเส้นตรงทั้งสองคือจุดหมุนดังรูป

การหาจุดหมุน

จุดหมุน

คลิปตัวอย่างเรื่องการหมุน

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว

ขั้นตอนของการแก้โจทย์ปัญหา บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง โจทย์ปัญหาสมการเชิงเส้นตัวแปรเดียว ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย แต่ก่อนที่น้องๆจะเรียนเรื่องนี้อย่าลืมทบทวน การแก้สมการเชิงเส้นตัวแปรเดียว กันก่อนนะคะ ถ้าน้องๆพร้อมแล้วเรามาศึกษาขั้นตอนของการแก้โจทย์ปัญหาเกี่ยวกับสมการ ดังนี้               ขั้นที่ 1 วิเคราะห์โจทย์ว่ากำหนดอะไรให้บ้าง และให้หาอะไร               ขั้นที่ 2 กำหนดตัวแปรแทนสิ่งที่โจทย์ให้หาหรือแทนสิ่งที่เกี่ยวข้องกับสิ่งที่โจทย์ให้หา               ขั้นที่ 3 เขียนสมการตามเงื่อนไขของโจทย์               ขั้นที่

Profile

การตั้งประโยคคำถามแบบมีกริยาช่วยนำหน้าและ Wh-questions

สวัสดีค่ะนักเรียนชั้นม.1 ทุกคน วันนี้ครูจะพาไปดู ความแตกต่างของ ประโยคคำถามที่มีกริยาช่วยนำหน้า กับ Wh-questions กันค่ะ พร้อมแล้วก็ไปลุยกันเลย มารู้จักกับกริยาช่วย   Helping verb หรือ Auxiliary verb กริยาช่วย หรือ ภาษาทางการเรียกว่า กริยานุเคราะห์  คือกริยาที่วางอยู่หน้ากริยาหลัก (Main verb) ในประโยค  ทำหน้าที่ช่วยกริยาอื่นให้มีความหมายตาม

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

จุด

จุด : เรขาคณิตวิเคราะห์

จุด จุด เป็นตัวบอกตำแหน่งของสิ่งต่างๆ เช่น ตำแหน่งของสถานที่ต่างๆ ในเรื่องเรขาคณิตวิเคราะห์ จุดใช้บอกตำแหน่งในระนาบ 2 มิติ หรือ 3 มิติ เช่น   ระยะทางระหว่างจุดสองจุด เราสามารถหาระยะทางระหว่างจุดสองจุดได้ โดยใช้สูตร โดยจะกำหนดให้  และ  เป็นจุดในระนาบ เราจะได้ว่าระยะห่างระหว่างจุดทั้งสองหาได้จาก ตัวอย่าง ระยะห่างระหว่าง A(1,1) และ

like love enjoy ving

การแนะนำตัวเองและให้ข้อมูลโดยใช้ “Like”, “Love”, และ “Enjoy”

สวัสดีน้องๆ ม. 1 ทุกคนนะครับ คราวที่แล้วเราได้อ่านเรื่องการใช้ประโยคคำสั่ง ขอร้อง และคำแนะนำกันไปแล้ว วันนี้เราจะมาดูวิธีการแนะนำตัวเอง และให้ข้อมูลคร่าวๆ เกี่ยวกับตัวเราแบบง่ายๆ กันครับ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1