กราฟของสมการเชิงเส้นสองตัวแปร

เนื้อหาในบทนี้จะเป็นการกล่าวถึง การแสดงความสัมพันธ์ของปริมาณสองปริมาณแล้วนำมาเขียนแสดงเป็นกราฟ
Picture of tucksaga
tucksaga

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

กราฟของสมการเชิงเส้นสองตัวแปร คือกราฟแสดงความสัมพันธ์ระหว่างปริมาณสองชุดที่มีความสัมพันธ์เชิงเส้นสองตัวแปรหรือกราฟเส้นตรง ซึ่งจะพบเห็นในชีวิตประจำวันทั้งในด้านวิทยาศาสตร์และสังคมศาสตร์ 

ความหมายของกราฟสมการเชิงเส้นสองตัวแปร

ความสัมพันธ์ระหว่างปริมาณสองชุดที่มีกราฟอยู่ในแนวเส้นตรงเดียวกันเป็นความสัมพันธ์เชิงเส้น พิจารณาความสัมพันธ์ต่อไปนี้

“สามเท่าของจำนวนเต็มจำนวนหนึ่งมากกว่าจำนวนเต็มอีกจำนวนหนึ่งอยู่ 10″

             ถ้าให้ x แทนจำนวนเต็มจำนวนแรก

                      y แทนจำนวนเต็มจำนวนที่สอง

เขียนข้อความข้างต้นเป็นสมการได้เป็น  3x – y  =  10

เมื่อกำหนดค่า x และหาค่า y ที่เป็นไปได้ตามเงื่อนไขของข้อความข้างต้น จะได้ ดังตารางต่อไปนี้

ตารางสองตัวแปรจากตาราง คู่อันดับที่แสดงความสัมพันธ์ระหว่างจำนวนเต็มจำนวนแรกและจำนวนเต็มจำนวนที่สอง คือ  (-10, -40), (-5, -25), (0, -10), (5, 5) และ (10, 20) นำคู่อันดับที่ได้มาเขียนกราฟได้ดังนี้

กราฟสองตัวแปร

 จากตัวอย่างข้างต้น จะเห็นว่า กราฟที่ได้เป็นจุดที่เรียงอยู่ในแนวเส้นตรงเดียวกันความสัมพันธ์ของจำนวนเต็มทั้งสองจึงเป็นความสัมพันธ์เชิงเส้น

สมการของความสัมพันธ์เชิงเส้นที่แสดงความเกี่ยวข้องระหว่างปริมาณสองชุดจะเรียกว่า “สมการเชิงเส้นสองตัวแปร”

นิยาม

 

ลักษณะสำคัญของสมการเชิงเส้นสองตัวแปร AX + By + C = 0 คือ มีตัวแปรสองตัวและต้องไม่มีการคูณกันของตัวแปร เลขชี้กำลังของตัวแปรแต่ละตัวต้องเป็นหนึ่ง สัมประสิทธิ์ตัวใดตัวหนึ่งเป็นศูนย์ได้ แต่สัมประสิทธิ์ของตัวแปรทั้งสองจะเป็นศูนย์พร้อมกันไม่ได้

 

 กรณีที่กำหนดสมการเชิงเส้นสองตัวแปรในรูป Ar + By + C = 0 ถ้าไม่ระบุเงื่อนไขของ x และ y ให้ถือว่า x และ y แทนจำนวนจริงใด ๆ และกราฟของสมการเชิงเส้นสองตัวแปรนี้จะเป็นเส้นตรงที่เรียกว่า “กราฟเส้นตรง”

แก้สมาการของกราฟเชิงเส้นสองตัวแปร

เมื่อกำหนดสมการเชิงเส้นสองตัวแปรให้ เราสามารถหาคู่อันดับ (x,y) ที่เมื่อแทนค่า x และค่า y ในสมการแล้วทำให้สมการเป็นจริง โดยการกำหนดค่า x แล้วหาค่า y จากสมการ ดังตัวอย่างเช่น

สมการเชิงเส้น

แก้สมการเชิงเส้น

เมื่อนำคู่อันดับที่สอดคล้องกับสมการ 5x+3y-10=0 เช่น (-1,5) ,(0,10/3) และ (2,0) มาเขียนกราฟ จะได้กราฟเป็นจุดที่อยู่ในแนวเส้นตรงเดียวกัน ดังนี้

กราฟของสมการเชิยงเส้นสองตัวแปร

ในกรณีที่ไม่ระบุเงื่อนไขของ x และ y ในสมการเช่น 5x+3y-10=0 ให้ถือว่า x และ y แทนจำนวนจริงใดๆ นั่นหมายความว่า ยังมีคู่อันดับ (x,y) เหล่านั้นก็จะอยู่บนเส้นตรงที่เป็นกราฟของสมการนี้ด้วย

คลิปวิดีโอตัวอย่างเรื่องกราฟของสมการเชิงเส้นสองตัวแปร

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน

อัตราส่วนของจำนวนหลายๆจำนวน บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง อัตราส่วนของจำนวนหลายๆจำนวน ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลาย ซึ่งก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง อัตราส่วนที่เท่ากัน โดยการที่จะหาอัตราส่วนของจำนวนหลายๆจำนวนหรือเรียกอีกอย่างว่า อัตราส่วนต่อเนื่อง ได้นั้น น้องๆ จำเป็นต้องหา ค.ร.น. ของตัวร่วม ดังนั้นเรามาทบทวนวิธีการหา ค.ร.น. กันก่อนนะคะ จงหา ค.ร.น. ของ 3, 6 และ 12 3) 3     

3 ขั้นตอนการเขียนโครงงานอย่างง่ายที่ไม่ว่าใครก็ทำได้

ในเมื่อมีการเขียนรายงานแล้วทำไมถึงยังต้องมีการเขียนโครงงาน? น้อง ๆ เคยสงสัยไหมคะว่า การเขียนโครงงาน นั้นไม่เหมือนกับรายงานทั่วไปอย่างไร มีองค์ประกอบและขั้นตอนการเขียนอย่างไร ถ้าอยากรู้แล้วเราไปเรียนรู้เรื่องนี้พร้อมกันเลยนะคะ   โครงงานคืออะไร   โครงงานเป็นกิจกรรมที่เน้นกระบวนการโดยผู้เรียนจะเป็นผู้คิดค้น วางแผน ลงมือปฏิบัติตามแผนที่วางไว้ อาศัยเครื่องมือและวัสดุอุปกรณ์ในการปฏิบัติ เพื่อให้โครงงานสำเร็จภายใต้คำแนะนำ การกระตุ้นความคิด กระตุ้นการทำงานของครูผู้สอนหรือผู้เชี่ยวชาญ ตั้งแต่คิดสร้างโครงงาน ลงมือปฏิบัติ ไปจนถึงประเมินผล   ความสำคัญของโครงงาน    

NokAcademy_ ม.5 Modlas in the Past

Modals in the Past

  สวัสดีค่านักเรียนชั้นม.5 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Modals in the Past “ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยจร้า   ทบทวน Modal Verbs      Modal Auxiliaries คือ กริยาช่วยกลุ่ม  Modal

การแก้อสมการเชิงเส้นตัวแปรเดียว

บทความนี้จะเป็นการสอนวิธี การแก้อสมการเชิงเส้นตัวแปรเดียว ซึ่งสามารถทำได้โดยการจัดรูปของตัวแปรให้อยู่ด้านเดียวกันและตัวเลขอยู่อีกด้าน เพื่อหาค่าของตัวแปรนั้นๆ แต่ก่อนที่น้องๆจะได้เรียนรู้การแก้อสมการนั้น น้องๆสามารถทบทวน อสมการเชิงเส้นตัวแปรเดียวเพิ่มเติมได้ที่  ⇒⇒ แนะนำอสมการเชิงเส้นตัวแปรเดียว ⇐⇐ หลักการแก้อสมการเชิงเส้นตัวแปรเดียว ในการแก้อสมการเชิงเส้นตัวแปรเดียว จะทำคล้ายๆกับการแก้สมการ โดยมีหลักการ ดังนี้ จัดตัวแปรให้อยู่ข้างเดียวกัน และจัดตัวเลขไว้อีกฝั่ง (นิยมจัดตัวแปรไว้ด้านซ้ายของสัญลักษณ์อสมการ และจัดตัวเลขไว้ด้านขวาของสัญลักษณ์อสมการ) ถ้านำจำนวนลบ มาคูณ หรือ หาร สัญลักษณ์ของอสมการจะเปลี่ยนเป็นสัญลักษณ์ตรงกันข้าม ดังนี้

การสร้างตารางค่าความจริง

บทความนี้เป็นเนื้อหาเกี่ยวกับการสร้างตารางค่าความจริงของประพจน์ เป็นเนื้อหาที่ไม่ยากมากหลังจากน้องๆได้อ่านบทความนี้แล้ว น้องๆจะสามารถสร้างตารางค่าความจริงได้ สามารถบอกได้ว่าประพจน์แต่ละประพจน์เป็นจริงได้กี่กรณีและเป็นเท็จได้กี่กรณี และจะทำให้น้องเรียนเนื้อหาเรื่องต่อไปได้ง่ายยิ่งขึ้น

NokAcademy_ ม4 Passive Modals (2)

Passive Modals คืออะไร

สวัสดีค่านักเรียนชั้นม.4 ที่น่ารักทุกคน วันนี้เราจะไปดู ” Passive Modals“ ที่ใช้บ่อยพร้อมเทคนิคการใช้งานง่ายๆกันค่า Let’s go! ไปลุยกันเลยเด้อ ทบทวนสักหน่อย   ก่อนอื่นเราจะต้องทบทวนเรื่อง Modal verbs หรือ Modal Auxiliaries กันก่อนจร้า แล้วจากนั้นเราจะไปลงลึกเรื่อง Passive voice หรือโครงสร้างประธานถูกกระทำที่คุ้นหูกันหากใครที่ลืมแล้วก็ไม่เป็นไรน๊า มาเริ่มใหม่ทั้งหมดกันเลยจร้า กลุ่มของ

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1