ทักษะและกระบวนการทางคณิตศาสตร์ (1)

phanuphong
phanuphong

สารบัญ

ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ทักษะและกระบวนการทางคณิตศาสตร์เป็นสิ่งสำคัญสำหรับวิชาคณิตศาสตร์ เป็นเพราะว่าคณิตศาสตร์เป็นวิชาที่ว่าด้วยสัญลักษณ์ เหตุผล เเละการคำนวณ ซึ่งคณิตศาสตร์เเบ่งเป็น 2 ประเภท คือ

  1. คณิตศาสตร์บริสุทธิ์ คือ คณิตศาสตร์ที่ถูกคิดค้นขึ้นมาโดยไม่ได้นำไปประยุกต์ใช้กับศาสตร์ใด ๆ
  2. คณิตศาสตร์ประยุกต์ คือ คณิตศาสตร์ที่ถูกนำไปประยุกต์ใช้กับศาสตร์ต่าง ๆ หรือนำไปใช้ในชีวิตประจำวัน เช่น คณิตศาสตร์สำหรับวิศวกรรม คณิตศาสตร์การคลัง

โดยทักษะเเละกระบวนการทางคณิตศาสตร์ที่บทความนี้จะนำเสนอคือ การบวกกันของตัวเลขที่น่าสนใจ น้อง ๆ จะได้เรียนสูตรทั้งหมด 4 สูตรในบทความนี้

ผลบวกของตัวเลขที่น่าสนใจ

สูตรที่  1)  1 + 2 + 3 + 4 + … + n = \frac{n(n+1)}{2}

โดยสูตรที่ 1 เป็นการบวกกันของตัวเลขที่เรียงกัน เเละเริ่มต้นจากเลข 1 ซึ่งในกรณีที่ตัวเลขเริ่มต้นไม่ได้เริ่มจากเลข 1

สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน = จำนวนพจน์(ปลาย + ต้น) 
.                                                                                           2
โดยจำนวนพจน์ = ปลาย – ต้น + 1

จะเห็นได้ว่าจากสูตรที่ 1 คือสูตรเดียวกันกับสูตรผลบวกของเลขหลายจำนวนที่เรียงกันซึ่งสูตรที่ 1 เริ่มต้นจากเลข 1 เเสดงว่า ต้น = 1, ปลาย = n, เเละจำนวนพจน์ = n เหมือนกันเพราะว่าเป็นการเรียงตัวกันตั้งเเต่ 1 ถึง n ดังนั้นสามารถนำ n มาเป็นจำนวนพจน์ได้

การเลือกใช้สูตรที่ 1 หรือสูตรผลบวกของเลขหลายจำนวนที่เรียงกัน ให้เลือกจากเลขเริ่มต้นจากโจทย์ถ้าเริ่มจากเลข 1 ให้ใช้สูตรที่ 1 ในการหาคำตอบ ถ้าโจทย์เริ่มจากเลขอื่นให้ใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน

สูตรที่ 2) 1 + 3 + 5 + 7 + … + (2n-1) = n^{2}
โดยสูตรที่ 2 เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1

สูตรที่ 3) 1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}
โดยสูตรที่ 3 เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1

สูตรที่ 4) 1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}
โดยสูตรที่ 4 เป็นการหาผลบวกของตัวเลขจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1


ตัวอย่างโจทย์ทักษะและกระบวนการทางคณิตศาสตร์ (1)

ตัวอย่างที่ 1) จงหาผลบวกของ 1 + 2 + 3 + 4 + 5 +… + 71

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 1 ดังนั้นใช้สูตร 1

1 + 2 + 3 + 4 + 5 +… + 71  =  \frac{n(n+1)}{2}

.                                              =  \frac{71(71+1)}{2}

.                                              = \frac{71(72)}{2}

.                                              = \frac{5112}{2}

.                                              = 2556

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 2556

ตัวอย่างที่ 2) จงหาผลบวกของ 40 + 41 + 42 + 43 + … + 68

วิธีทำ จากโจทย์เป็นผลบวกของชุดตัวเลขที่เรียงติดกันโดยเริ่มจาก 40 ดังนั้นใช้สูตรผลบวกของเลขหลายจำนวนที่เรียงกัน 

40 + 41 + 42 + 43 + … + 68 = (จำนวนพจน์(ปลาย + ต้น))/2

เริ่มจากการหาจำนวนพจน์ก่อน ซึ่งจำนวนพจน์ = ปลาย – ต้น + 1
.                                                                           = 68-40+1
.                                                                           = 29

40 + 41 + 42 + 43 + … + 68 = (29(68 + 40))/2
.                                                  = (29(108))/2
.                                                  = (3132)/2
.                                                  = 1566

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 1566

ตัวอย่างที่ 3) จงหาผลบวกของ 1 + 3 + 5 + 7 + … + 61 

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขจำนวนคี่ที่เรียงติดกันเเละเริ่มต้นด้วยเลข 1 ดังนั้นใช้สูตร 2

1 + 3 + 5 + 7 + … + (2n-1) = n^{2}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 61
.                                                        2n    = 61 + 1
.                                                        2n    = 62
.                                                          n    = 62/2
.                                                          n    = 31

เมื่อ n = 31 เราสามารถหาผลบวกของชุดจำนวนนี้ได้ดังนี้

1 + 3 + 5 + 7 + … + 61 = 61^{2}

1 + 3 + 5 + 7 + … + 61 = 3721

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 3721

ตัวอย่างที่ 4) จงหาผลบวกของ 1^{2} + 2^{2} + 3^{2} + ... + 12^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของตัวเลขกำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 3

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{n(n+1)(2n+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(12+1)(2(12)+1)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = \frac{12(13)(25)}{6}

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 2(13)(25)

1^{2} + 2^{2} + 3^{2} + ... + 12^{2} = 650

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 650

ตัวอย่างที่ 5) จงหาผลบวกของ 1^{2} + 3^{2} + 5^{2} + ... + 15^{2}

วิธีทำ จากโจทย์เป็นการหาผลบวกของจำนวนคี่กำลังสองที่เรียงติดกันเเละเริ่มจากเลข 1 ดังนั้นใช้สูตร 4

1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}

โดยเราเริ่มจากการหา n ก่อนซึ่ง (2n-1) = 15
.                                                        2n    = 15 + 1
.                                                        2n    = 16
.                                                          n    = 16/2
.                                                          n    = 8

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{n(2n-1)(2n+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(2(15)-1)(2(15)+1)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = \frac{15(29)(31)}{3}

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 5(29)(31)

1^{2} + 3^{2} + 5^{2} + ... + 15^2 = 4495

ตอบ ผลบวกของชุดเลขจำนวนนี้มีค่าเท่ากับ 4495

หากน้อง ๆ สามารถหาผลบวกของตัวเลขที่น่าสนใจได้เเล้ว น้อง ๆ สามารถนำไปประยุกต์ใช้ในชีวิตประจำวันได้หลากหลายในอนาคตทั้งเรื่องของอนุกรมเเละผลบวกของอนุกรม น้อง ๆ สามารถศึกษา ทักษะเเละกระบวนการทางคณิตศาสตร์ เพิ่มเติมได้ในคลิปวิดีโอด้านล่าง


คลิปวิดีโอ ทักษะเเละกระบวรการทางคณิตศาสตร์ (1)

คลิปวิดีโอนี้ได้รวบรวมวิธีหา ทักษะและกระบวนการทางคณิตศาสตร์  ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยความรู้ เเละเทคนิครวมถึงการอธิบาย ตัวอย่าง เเละสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

เรียนพิเศษออนไลน์ ดูได้ทั้ง 4 รายวิชา - NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

NokAcademy_Past Tense และ Present Continuous Tense

เรียนรู้ เรื่อง Past Tense และ Present Continuous Tense

Hi guys! สวัสดีค่ะนักเรียนชั้นป.5 ที่น่ารักทุกคน วันนี้เราจะไปเรียนรู้ เรื่อง Past Tense และ Present Continuous Tense  ถ้าพร้อมแล้วก็ไปลุยกันโลด มาเริ่มกันกับ Past Tenses   ก่อนอื่นเราจะต้องรู้จักก่อนว่า การเล่าถึงงเหตุการณ์ในอดีตนั้นเราสามารถเล่าได้หลายแบบ ครูจะขอยกตัวอย่างจากสถาณการณ์การใช้ไปหาโครงสร้างและคำศัพท์ที่จำเป็นเพื่อให้เราเข้าใจความสำคัของ Tense นั้นๆ ร่วมกับเทคนิค “Situational usage”

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ

ความน่าจะเป็นกับการตัดสินใจ บทความนี้ได้รวบรวมความรู้เรื่อง ความน่าจะเป็นกับการตัดสินใจ สำหรับบางเหตุการณ์ความรู้เรื่องความน่าจะเป็นเพียงอย่างเดียว  อาจไม่เพียงพอที่จะช่วยตัดสินใจได้  จำเป็นจะต้องหาองค์ประกอบอื่นมาช่วยในการตัดสินใจด้วย  นั่นคือผลตอบแทนของการเกิดเหตุการณ์นั้น ซึ่งก่อนที่จะเรียนเรื่องนี้ น้องๆจะต้องมีความรู้ในเรื่อง ความน่าจะเป็นของเหตุการณ์ สามารถศึกษาเพิ่มเติมได้ที่  ⇒⇒ ความน่าจะเป็นของเหตุการณ์ ⇐⇐ ผลตอบแทนของเหตุการณ์อาจหมายถึง ผลตอบแทนที่ได้หรือผลตอบแทนที่เสีย  เช่น  ในการเล่นแทงหัวก้อย  ถ้าออกหัว พีชจะได้เงิน 2 บาท และถ้าออกก้อย พอลจะต้องเสียเงิน 3 บาท เงิน 2 บาทที่พอลจะได้รับเป็นผลตอบแทนที่ได้ 

Present Perfect

Present Perfect ในภาษาอังกฤษ

สวัสดีน้องๆ ม.​ 4 ทุกคนนะครับ วันนี้เราจะมาพูดถึงเรื่อง Present Perfect ในภาษาอังกฤษ จะเป็นอย่างไรลองไปดูกันเลยดีกว่าครับ

การลบเศษส่วนและจำนวนคละ

ลบไม่ได้ช่วยให้ลืม เช่นเดียวกับการลบเศษส่วนและจำนวนคละ!

บทความที่แล้วเราได้กล่าวถึงการบวกเศษส่วนและจำนวนคละไปแล้ว บทต่อมาก็จะเป็นเรื่องของการลบเศษส่วนและจำนวนคละ ทั้งสองเรื่องนี้มีหลักการคล้ายกันต่างกันที่เครื่องหมายที่บ่งบอกว่าโจทย์ต้องการทราบอะไร ดังนั้นบทความนี้จะอธิบายถึงหลักการลบเศษส่วนและจำนวนคละอย่างละเอียดและยกตัวอย่างให้น้อง ๆเข้าใจอย่างเห็นภาพและสามารถนำไปปรับใช้กับแบบฝึกหัดเรื่องการลบเศษส่วนและจำนวนคละได้

คุณศัพท์บอกความรู้สึก

การใช้คำคุณศัพท์และการบอกความรู้สึก

สวัสดีค่ะนักเรียนชั้นม.2 ที่น่ารักทุกคน วันนี้ครูจะพาไปดูเทคนิคและวิธีการใช้ Descriptive Adjective การใช้คำคุณศัพท์บอกลักษณะและความรู้สึก กันค่ะ ถ้าพร้อมแล้วก็ไปลุยกันเลยจร้า    ความหมายของคำคุณศัพท์     คำคุณศัพท์หรือ Adjective มีตัวย่อคือ Adj.  ทำหน้าที่ขยายคำนามหรือสรรพนามที่อยู่ในประโยค คำนามหรือสรรพนาม ณ ที่นี้ ก็คือ คน สัตว์ สิ่งของ สถานที่