การสะท้อน

ในบทความนี้เราจะได้เรียนรู้ภาพที่ได้จากการสะท้อน ( Reflection ) ไปตามแนวแกนต่างๆ หวังว่าน้องๆ จะสามารถนำความรู้ที่ได้จากบทความนี้ ไปประยุกต์ใช้ในห้องเรียนและในชีวิตประจำวันได้อย่างแท้จริง
tucksaga
tucksaga

แชร์

Share on twitter
Share on facebook
การสะท้อน

สารบัญ

การประยุกต์ของการแปลงทางเรขาคณิตเป็นการเปลี่ยนตำแหน่งของรูปเรขาคณิต โดยลักษณะและขนาดของรูปยังคงเดิม โดยใช้การสะท้อนเช่นเดียวกัยการที่เราไปยืนหน้ากระจก

ความหมายของการสะท้อน

การสะท้อนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีเส้นตรง l เป็นเส้นสะท้อนแต่ละจุด P บนระนาบจะมีจุด P´ เป็นภาพที่ได้จากการสะท้อนจุด P โดยที่

  1. ถ้าจุด P ไม่อยู่บนเส้นตรง l แล้วเส้นตรง l จะแบ่งครึ่งและตั้งฉากกับส่วนของเส้นตรง PP´
  2. ถ้าจุด P อยู่บนเส้นตรง l แล้วจุด P และ P´ เป็นจุดเดียวกัน

รูปสะท้อน

สมบัติการสะท้อน

  1. สามารถเลื่อนรูปต้นแบบทับภาพที่ได้จากการสะท้อนได้สนิทโดยต้องพลิกรูปหรือกล่าวว่ารูปต้นแบบและภาพที่ได้จากการสะท้อนเท่ากันทุกประการ
  2. ส่วนของเส้นตรงบนรูปต้นแบบและภาพที่ได้จากการสะท้อนของส่วนของเส้นตรงนั้นไม่จำเป็นต้องขนานกันทุกคู่
  3. ส่วนของเส้นตรงที่เชื่อมจุดแต่ละจุดบนรูปต้นแบบกับจุดที่สมนัยกันบนภาพที่ได้จากการสะท้อนจะขนานกันและไม่จำเป็นต้องยาวเท่ากัน

การหาภาพที่ได้จากการสะท้อนเมื่อกำหนดรูปต้นแบบและเส้นสะท้อนมาให้

กำหนดให้ รูปสี่เหลี่ยม ABCD เป็นรูปต้นแบบและ เส้นตรงXY เป็นเส้นสะท้อนจงหาภาพที่ได้จากการสะท้อนของรูปสี่เหลี่ยม ABCD

วิธีสร้าง

หาภาพสะท้อน

การหาเส้นสะท้อนเมื่อกำหนดรูปต้นแบบและภาพที่ได้จากการสะท้อน

กำหนดให้ สามเหลี่ยม A’B’C’ เป็นภาพที่ได้จากการสะท้อน สามเหลี่ยมABC ดังรูป

สะท้อนจากรูปต้นแบบ

 

แนวคิด การหาเส้นสะท้อนที่มีสามเหลี่ยมA’B’C’ เป็นภาพที่ได้จากการสะท้อนทำได้โดยลากส่วนของเส้นตรงเชื่อมระหว่างจุดที่สมนัยกับคู่ใดคู่หนึ่งของ สามเหลี่ยมABC และ สามเหลี่ยมA’B’C เช่น อาจจะลาก AA’ , BB’ หรือ CC’ ก็ได้

แล้วลากเส้นแบ่งครึ่งและตั้งฉากกับ AA’ จะได้เส้นสะท้อนตามต้องการดังรูป

การหาภาพจากการสะท้อนที่แกน X และแกน Y

กำหนดให้ สามเหลี่ยมABC และต้องการหาภาพจากการสะท้อนที่แกน X และสะท้อนที่แกน Y

สะท้อนจากแกม x แกน y

แนวคิด การหาภาพจากการสะท้อนที่แกน X

จากรูป สามเหลี่ยมABC มีแกน X เป็นเส้นสะท้อนจะมีจุด A’, B’ และ C’ เป็นภาพที่ได้จากการสะท้อนจุด A, B และ C ตามลำดับ ซึ่งพิกัดของจุดแต่ละคู่ที่สมนัยกันจะมีพิกัดที่หนึ่งเป็นจำนวนเดียวกันเพราะอยู่ด้านเดียวกันและห่างจากแกน Y เป็นระยะที่เท่ากันและมีพิกัดที่สองเป็นจำนวนตรงข้ามกันเพราะอยู่คนละด้านของแกน X เป็นระยะทางที่เท่ากันและภาพที่ได้มีลักษณะดังรูป

ภาพสะท้อนแกน x y

การหาพิกัดของจุด A’ , B’ และ C’ หาได้โดยพิจารณาพิกัดของ A, B, C

คือ        A (1, 3) → A ‘(1, -3)

            B (-4, -2) → B’ (-4. 2)

            C (3. -5) → C ‘(3.5)

การหาภาพจากการสะท้อนที่แกน Y

ทำได้โดยการพิจารณาพิกัดของ A’ , B’ และ C’ จากพิกัดของ A, B และ C ดังนี้

A (1, 3) → A ‘(-1, 3)

B (-4, -2) → B’ (4. -2)

C (3. -5) → C'(-3, -5)

การสะท้อน

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ขนานกับแกน X หรือขนานกับแกน Y

ถ้าเส้นสะท้อนขนานกับแกน X หรือแกน Y ให้นับช่องตารางหาระยะระหว่างจุดที่กำหนดให้กับเส้นสะท้อนซึ่งภาพของจุดนั้นจะอยู่ห่างจากเส้นสะท้อนเป็นระยะที่เท่ากันกับระยะที่นับได้เมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่น ภาพของ A ที่สะท้อนที่เส้นตรง l  เป็นภาพที่ A’

การหาภาพที่สะท้อนกับเส้นสะท้อนที่ไม่ขนานกับแกน X และไม่ขนานกับแกน Y

ในกรณีที่เส้นสะท้อนไม่ขนานกับแกน X และแกน Y แต่เป็นเส้นในแนวทแยงให้ลากเส้นตรงผ่านจุดที่กำหนดให้และตั้งฉากกับเส้นสะท้อนภาพของจุดที่กำหนดให้จะอยู่บนเส้นตั้งฉากที่สร้างขึ้นและอยู่ห่างจากเส้นสะท้อนเป็นระยะเท่ากับจุดที่กำหนดให้อยู่ห่างจากเส้นสะท้อนเมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด

ตัวอย่างเช่นภาพของจุด A(4, 2) สะท้อนกับเส้นตรง l ได้ภาพที่ A’ ดังรูป

คลิปตัอย่างเรื่องการสะท้อน

0

ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

สามารถดูวิดีโอบทเรียนวิชา
คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ วิดีโอ
และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แชร์

Share on twitter
Share on facebook

แนะนำ

ข้อสอบ O-Net

ข้อสอบO-Net เรื่องจำนวนจริง

ข้อสอบO-Net ข้อสอบO-Net ในบทความนี้จะคัดเฉพาะเรื่องจำนวนจริงมาให้น้องๆทุกคนได้ดูว่าที่ผ่านมาแต่ละปีข้อสอบเรื่องจำนวนจริงออกแนวไหนบ้าง โดยบทความนี้พี่ได้นำข้อสอบย้อนหลังของปี 49 ถึงปี 52 มาให้น้องๆได้ดูพร้อมเฉลยอย่างละเอียด เมื่อน้องๆได้ศึกษาโจทย์ทั้งหมดและลองฝึกทำด้วยตัวเองแล้ว น้องๆจะสามารถทำข้อสอบทั้งของในโรงเรียนและข้อสอบO-Net ได้แน่นอนค่ะ ข้อสอบO-Net เรื่องจำนวนจริง ปี 49   1.   มีค่าเท่ากับข้อในต่อไปนี้     60      

ฟังก์ชันและกราฟของฟังก์ชัน

ฟังก์ชันและกราฟของฟังก์ชัน ฟังก์ชันและกราฟของฟังก์ชัน มีความเกี่ยวข้องกันเนื่องจากฟังก์ชันที่เราเขียนในรูป y = f(x) สามารถนำไปเขียนกราฟในระบบพิกัดฉากได้ ซึ่งกราฟในระบบพิกัดฉากก็คือ กราฟที่ประกอบไปด้วยแกน x และ แกน y   ก่อนที่เราจะเริ่มบทเรียนของฟังก์ชัน อยากให้น้องๆได้ศึกษารูปต่อไปนี้ก่อนนะคะ จากรูป คือการส่งสมาชิกในเซต A ไปยังสมาชิกในเซต B เซต A จะถูกเรียกว่า โดเมน

past tense

Past Tense ที่มี Time Expressions

สวัสดีน้องๆ ม. 2 ทุกคนนะครับ วันนี้เราจะมาเรียนรู้เกี่ยวกับ Past Tense และ Time Expressions ในประโยคดังกล่าว ถ้าพร้อมแล้วเราไปเริ่มกันเลยครับ

การหารทศนิยม

การหารทศนิยมในระดับชั้นป.5

บทความนี้จะกล่าวถึงหลักการหารทศนิยม 2 รูปแบบก็คือ การหารทศนิยมด้วยจำนวนเต็ม และการหารทศนิยมด้วยทศนิยม หลังจากที่น้องๆ ได้อ่านบทความนี้แล้ว รับรองว่าจะทำให้เข้าใจการหารทศนิยมได้มากขึ้นและสามารถนำวิธีคิดไปแก้โจทย์การหารทศนิยมได้

ความรู้เบื้องต้นเกี่ยวกับเซต

เซตคืออะไร? เซต คือ คำที่ใช้เรียกกลุ่มของสิ่งต่างๆ ทำไมต้องเรียนเซต เซตมีประโยชน์ในเรื่องของการจำแนกสิ่งต่างๆออกเป็นกลุ่มๆ อีกทั้งยังแทรกอยู่ในเนื้อหาบทอื่นๆของคณิตศาสตร์ เราจึงจำเป็นต้องทำความเข้าใจเกี่ยวกับเซต เพื่อที่จะเรียนเนื้อหาบทอื่นๆได้ง่ายขึ้น ความรู้เบื้องต้นเกี่ยวกับเซต เซต คือคำที่ใช้เรียกกลุ่มของสิ่งต่างๆ เช่น เซตของสระในภาษาอังกฤษ คือ กลุ่มของสระในภาษาอังกฤษ a,e,i,o,u เป็นต้น สมาชิกของเซต คือ สิ่งที่อยู่ในเซต เช่น เซตของสระในภาษาอังกฤษ สมาชิกของเซต คือ

ระบบจำนวนจริง

ระบบจำนวนจริง

ระบบจำนวนจริง “ระบบจำนวนจริง” เป็นรากฐานสำคัญของวิชาคณิตศาสตร์ ประกอบไปด้วยจำนวนต่างๆ ได้แก่ จำนวนตรรกยะ จำนวนอตรรกยะ จำนวนเต็ม จำนวนนับ โครงสร้าง ระบบจำนวนจริง มนุษย์เรามีความคิดเรื่องจำนวนและระบบการนับมาตั้งแต่โบราณ และจำนวนที่มนุษย์เรารู้จักเป็นอย่างแรกก็คือ จำนวนนับ การศึกษาระบบของจำนวนจึงใช้พื้นฐานของจำนวนนับในการสร้างจำนวนอื่นขึ้นมา จนกลายมาเป็นจำนวนจริง และจำนวนเชิงซ้อน (เนื้อหาม.5) ดังนั้น ถ้าน้องๆเข้าใจจำนวนนับแล้วน้องๆก็จะสามารถศึกษาระบบจำนวนอื่นๆได้ง่ายขึ้น   โครงสร้าง     จำนวนจริง จำนวนจริงคือจำนวนที่ประกอบไปด้วย

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ แค่ 10 นาที ก็เข้าใจได้

ฟรี! ดูวิดีโอบทเรียนสั้นๆ
แค่ 10 นาที ก็เข้าใจได้