การบวก ลบ คูณ หารจำนวนเต็ม

ารบวก-ลบ-คูณ-หารจำนวนเต็ม

สารบัญ

Add LINE friends for one click to find article. Add LINE friends for one click to find article.

บทความนี้จะทำให้น้องๆ มีความรู้ความเข้าใจในเรื่อง การบวก ลบ คูณ หารจำนวนเต็ม มากยิ่งขึ้น ซึ่งได้รวบรวมตัวอย่างไว้อย่างหลากหลายและอธิบายไว้อย่างละเอียด โดยก่อนที่น้องๆจะเรียนเรื่องนี้จะต้องเรียนรู้เรื่อง จำนวนตรงข้าม และ ค่าสัมบูรณ์ เพื่อใช้ในการบวก ลบ จำนวนเต็ม ซึ่งมีวิธีการดังตัวอย่างต่อไปนี้

การบวกจำนวนเต็ม

การบวกจำนวนเต็มบวก โดยใช้ค่าสัมบูรณ์ ให้น้องๆทบทวนการหาค่าสัมบูรณ์ ดังนี้

|-12|=   12

|4|=   4

เนื่องจาก   ค่าสัมบูรณ์ของจำนวนเต็มบวก และ จำนวนเต็มลบ ถอดค่าสมบูรณ์ได้ จำนวนเต็มบวก เสมอ               

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก          

ตัวอย่างที่ 1   จงหาผลบวกของจำนวนต่อไปนี้

1)   3 + 4

วิธีทำ      3 + 4 = | 3 | + | 4 |

      = 3 + 4

      = 7

ตอบ   7

2)   3 + 9

วิธีทำ      3 + 9  = | 3 | + | 9 |

       = 3 + 9

       = 12

ตอบ  12

        การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ทำได้โดยการนำค่าสัมบูรณ์มาบวกกัน  ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวก

การบวกจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 2   จงหาผลบวกของจำนวนต่อไปนี้  

1)   (-3) + (-4)  

วิธีทำ (-3) + (-4) = -7

ตอบ  -7

2)  (-4) + (-1)

วิธีทำ  (-4) + (-1)  =  -5

ตอบ   -5

          การบวกจำนวนเต็มลบกับจำนวนเต็มลบ  ผลลัพธ์ที่ได้เป็นจำนวนเต็มลบ

การบวกจำนวนเต็มบวกด้วยจำนวนเต็มลบ 

ตัวอย่างที่ 3  จงหาผลบวกของจำนวนต่อไปนี้

1)   6 + (-4)  

วิธีทำ   6 + (-4) = 2

ตอบ   2

2)   2 + (-6)

วิธีทำ  2 + (-6) = -4

ตอบ   -4

3)   3 + (-2)

วิธีทำ  3 + (-2) = 1

ตอบ   1

4)   7 + (-5)

วิธีทำ  7 + (-5) = 2

ตอบ   2

การบวกจำนวนเต็มลบด้วยจำนวนเต็มบวก 

ตัวอย่างที่ 4  จงหาผลบวกของจำนวนต่อไปนี้

1)   (-2) + 5

วิธีทำ   (-2) + 5 = 3

ตอบ   3

2)  (-5) + 3

วิธีทำ   (-5) + 3 = -2

ตอบ   -2

3)  (-7) + 5

วิธีทำ   (-7) + 5 = -2

ตอบ   -2

4)  (-4) + 10

วิธีทำ   (-4) + 10 = 6

ตอบ   6

          การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ทำได้โดยการนำจำนวนที่มีค่าสัมบูรณ์มากกว่าเป็นตัวตั้ง แล้วลบด้วยจำนวนที่มีค่าสัมบูรณ์น้อยกว่า ผลลัพธ์ที่ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า

การลบจำนวนเต็ม

การลบจำนวนเต็มคือการบวกด้วยจำนวนตรงข้าม เช่น จำนวนตรงข้ามของ 2 คือ -2 , จำนวนตรงข้ามของ 8 คือ -8

ตัวอย่างที่ 5  จงหาผลลบของจำนวนต่อไปนี้

1)   7 – 12

วิธีทำ   7 – 12  =  7 + (-12)

                      =  -5

ตอบ       -5

2)  (-8) – 2

วิธีทำ    (-8) – 2  =  (-8) + (-2)

                         =  -10    

ตอบ       -10

3)   3 – (-5)

วิธีทำ    3 – (-5)       =  3 + 5

                               =  8

ตอบ       8

4)   (-3) – (-8)

วิธีทำ      (-3) – (-8)   =   (-3) + 8

                                =   5    

ตอบ       5

5)   8 – 5

วิธีทำ    8 – 5  =  8 + (-5)

                     =     3

ตอบ       3

6)   (-9) – 4

วิธีทำ        (-9) – 4   =  (-9) + (-4)

                              =  -13    

ตอบ       -13

7)   6 – (-4)

วิธีทำ    6 – (-4)       =  6 + 4

                               =  10

ตอบ       10

8)   (-8) – (-2)

วิธีทำ        (-8) – (-2)   =   (-8) + 2

                                  =   -6    

ตอบ       -6

9)   (-8) – 4

วิธีทำ   (-8) – 4  =  (-8) + (-4)

                         =  -12

ตอบ      -12

10)   (-9) – (-3)

วิธีทำ   (-9) – (-3)  =  (-9) + 3

                             =  -6

ตอบ      -6

การคูณจำนวนเต็ม

การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก

ตัวอย่างที่ 6  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   3 x 2  

วิธีทำ        3 x 2  =   | 3 | x | 2 |

                         =   3 x 2

                         =   6

ตอบ     6

2)   4 x 7  

วิธีทำ        4 x 7  =   | 4 | x | 7 |

                         =   4 x 7

                         =   28

ตอบ     28

3)   4 x 10

วิธีทำ       4 x 10  =   | 4 | x | 10 |

                         =   4 x 10

                         =   40

ตอบ     40

4)   6 x 9  

วิธีทำ  6 x 9  =   | 6 | x | 9 |

                         =   6 x 9

                         =   54

ตอบ     54

       การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (บวกคูณบวกได้บวก)

การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ

ตัวอย่างที่ 7  จงหาผลคูณของจำนวนเต็มต่อไปนี้

1)   (-2)(-5) = 0

วิธีทำ   (-2)(-5)  =   | -2 | x | -5 |

                         =   2 x 5

                         =   10

ตอบ     10

(2)  (-7)(-3) = 0

วิธีทำ       (-7)(-3)   =  | -7 | x | -3 |

                              =   7 x 3

                              =   21

ตอบ     21

       การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ คำตอบที่ได้เป็นจำนวนเต็มบวกที่มี  ค่าสัมบูรณ์เท่ากับผลคูณของค่าสัมบูรณ์ของสองจำนวนนั้น (ลบคูณลบได้บวก)

ตัวอย่างที่ 8  จงหาผลลัพธ์ของจำนวนต่อไปนี้

1)   [(-2)(4)](-9) 

วิธีทำ   [(-2)(4)](-9)  =  (-8) (-9)

                                =   72

ตอบ     72

2)    [ 5(-7)] 6 

วิธีทำ     [ 5(-7)]6   =  (-35) 6

                              =    -210

ตอบ     -210

3)   [ 2(-5)](-4) 

วิธีทำ     [ 2(-5)](-4)  =   (-10) (-4)

                                 =   40

ตอบ     40

4)   9[ (-5)(-4)]  

วิธีทำ   9[(-5)(-4)]   =  9 x 20

                               =   180

ตอบ     180

การหารจำนวนเต็ม

ตัวอย่างที่ 9  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   36 ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ 36

เนื่องจาก 6 x 6 = 36 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ 36 ÷ 6 = 6

2)   (-54) ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ -54

เนื่องจาก (-9) x 6 = -54 

ดังนั้นจำนวนที่ต้องการคือ 6

นั่นคือ (-54) ÷ (-9) = 6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารเป็นจำนวนเต็มบวกทั้งคู่ หรือจำนวนเต็มลบทั้งคู่ จะได้คำตอบเป็นจำนวนเต็มบวก (ลบหารด้วยลบ หรือ บวกหารด้วยบวก ได้บวกเสมอ)

ตัวอย่างที่ 10  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   72 ÷ (-9)

หาจำนวนเต็มที่คูณกับ -9 แล้วได้ 72

เนื่องจาก (-9) x (-8) = 72 

ดังนั้นจำนวนที่ต้องการคือ -8

นั่นคือ 72 ÷ (-9) = -8

2)   (-36) ÷ 6

หาจำนวนเต็มที่คูณกับ 6 แล้วได้ -36

เนื่องจาก 6 x (-6) = -36 

ดังนั้นจำนวนที่ต้องการคือ -6

นั่นคือ (-36) ÷ 6 = -6

         การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารตัวใดตัวหนึ่งเป็นจำนวนเต็มลบ โดยที่อีกตัวหนึ่งเป็นจำนวนเต็มบวก จะได้คำตอบเป็นจำนวนเต็มลบ (ลบหารด้วยบวก หรือ บวกหารด้วยลบ ได้ลบเสมอ)

ตัวอย่างที่ 11  จงหาผลหารของจำนวนเต็มต่อไปนี้

1)   14 ÷ (-7) = -2    (หาจำนวนที่คูณกับ -7 แล้วได้ 14 คือ -2)

2)   12 ÷ 3 = 4    (หาจำนวนที่คูณกับ 3 แล้วได้ 12 คือ 4)

3)   (-21) ÷ 3 = -7    (หาจำนวนที่คูณกับ 3 แล้วได้ -21 คือ -7)

4)   (-35) ÷ (-5) = 7    (หาจำนวนที่คูณกับ -5 แล้วได้ -35 คือ 7)

5)   40 ÷ 8 = 5    (หาจำนวนที่คูณกับ 8 แล้วได้ 40 คือ 5)

สรุป
  • การบวกจำนวนเต็มบวกด้วยจำนวนเต็มบวก ได้เป็นจำนวนเต็มบวก
  • การบวกจำนวนเต็มลบกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มลบ
  • การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวกหรือจำนวนเต็มลบตามจำนวนที่มีค่าสัมบูรณ์มากกว่า    
  • การคูณจำนวนเต็มบวกด้วยจำนวนเต็มบวก  ได้เป็นจำนวนเต็มบวก (บวกคูณบวกได้บวก)
  • การคูณจำนวนเต็มลบด้วยจำนวนเต็มลบ ได้เป็นจำนวนเต็มบวก (ลบคูณลบได้บวก)
  •  การหารจำนวนเต็ม ลบหารด้วยลบ ได้บวก หรือ บวกหารด้วยบวก ได้บวก
  • การหารจำนวนเต็ม ลบหารด้วยบวก ได้ลบ หรือ บวกหารด้วยลบ ได้ลบ

คลิปวิดีโอ การบวก ลบ คูณ หารจำนวนเต็ม

        คลิปวิดีโอนี้ได้รวบรวมวิธี การบวก ลบ คูณ หารจำนวนเต็ม ไว้อย่างละเอียด ซึ่งเป็นคลิปสั้นๆ ที่สามารถเข้าใจได้ง่าย แฝงไปด้วยสาระความรู้ และเทคนิค รวมถึงการอธิบาย ตัวอย่าง และสอนวิธีคิดที่จะทำให้วิชาคณิตศาสตร์เป็นเรื่องง่าย

NockAcademy คือโรงเรียนออนไลน์สำหรับเด็ก โดยแอปฯ และเว็บไซต์ นักเรียนสามารถเรียนรู้ผ่านคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย
มากไปกว่านั้น เรายังมีคอร์สเรียนออนไลน์ การสอนพิเศษ การติวนอกสถานที่โดยติวเตอร์ที่แน่นไปด้วยความรู้ อีกด้วย

Add LINE friends for one click to find article. Add LINE friends for one click to find article.
ครูผู้สอน NockAcademy

แค่ 10 นาที ก็เข้าใจได้

สามารถดูคลิปบทเรียนวิชา คณิตศาสตร์ ภาษาอังกฤษ และภาษาไทย ที่มีมากกว่า 2,000+ คลิป และยังสามารถทำแบบทดสอบที่มีมากกว่า 4000+ ข้อ

แนะนำ

แชร์

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น

การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น การนำเสนอข้อมูลและแปลความหมายข้อมูลด้วยกราฟเส้น เป็นกราฟที่นิยมใช้เเสดงความเปลี่ยนเเปลงของข้อมูลของข้อมูลที่ได้จากการเก็บรวบรวมข้อมูล โดยเรียงข้อมูลตามลำดับก่อนหลังของเวลาที่ข้อมูลนั้น ๆ เกิดขึ้น ทำให้เห็นเเนวโน้มของข้อมูลเเละช่วยให้เห็นการเปลี่ยนเเปลงของข้อมูลได้อย่างรวดเร็ว รวมไปถึงเเสดงถึงความสัมพันธ์ต่าง ๆ ของข้อมูล ซึ่งสามารถนำไปใช้ในการพยากรณ์เกี่ยวกับข้อมูลนั้น ๆ ได้ ตัวอย่างรูปเเบบของกราฟเส้นที่สามารถพบเห็นได้ทั่วไปในชีวิตประจำวัน ตัวอย่างการนำเสนอข้อมูลเเละเเปลความหมายข้อมูลด้วยกราฟเส้น  ตัวอย่างที่ 1 จงเขียนกราฟเเสดงจำนวนผลไม้ที่ถูกขายตามข้อมูลดังนี้ วิธีทำ เริ่มจากการสร้างเเกน x เเละเเกน y โดยให้เเกน x เป็น

การคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก

การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก

บทความนี้ ได้รวบรวมตัวอย่าง การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ซึ่งทำได้โดยการใช้สมบัติการคูณของเลขยกกำลัง ทั้งสามสมบัติ ก่อนจะเรียนเรื่องการคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก ให้น้องๆ ไปศึกษาเรื่อง การเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก การคูณเลขยกกำลัง เมื่อเลขชี้กำลังเป็นจำนวนเต็มบวก สมบัติของการคูณเลขยกกำลัง  ถ้า a เป็นจำนวนใดๆ m และ n เป็นจำนวนเต็มบวก แล้ว  1)   am x an

ลิลิตตะเลงพ่าย

ถอดความหมายตัวบทเด่นใน ลิลิตตะเลงพ่าย

ลิลิตตะเลงพ่าย เป็นวรรณคดีเรื่องดังที่มีตัวบทเด่น ๆ มากมาย สำหรับการถอดคำประพันธ์ในวันนี้เราได้คัดเลือกบทเด่น ๆ มาให้น้อง ๆ ได้เรียนกันถึง 13 บทเลยทีเดียว แต่เพราะเนื้อหาที่สนุก ภาษาที่สละสลวย รับรองว่าน้อง ๆ จะไม่มีทางเบื่อวรรณคดีเรื่องนี้แน่นอน ถ้าพร้อมแล้วเราไปเรียนความหมายของแต่ละบทพร้อมกันเลยนะคะ ตัวบทเด่น ๆ ใน ลิลิตตะเลงพ่าย   บทที่ 1  

เส้นตรง

เส้นตรง

เส้นตรง เส้นตรง มีสมการรูปแบบทั่วไปคือ Ax + By + C = 0 และสมการรูปแบบมาตรฐานของเส้นตรงจะเขียนอยู่ในรูป y = mx + C ซึ่งจะอยู่ในหัวข้อ “สมการเส้นตรง” เส้นตรงหนึ่งเส้นประกอบไปด้วยจุดหลายจุด ซึ่งจุดเหล่านี้จะทำให้เราสามารถหาความชันได้ และเมื่อเราทราบความชันก็จะสามารถหาสมการเส้นตรงได้นั่นเอง ความชันของเส้นตรง ความชันของเส้นตรง ส่วนใหญ่นิยมใช้ m

โจทย์ปัญหาเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง

โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง          เราสามารถนำความรู้เกี่ยวกับเลขยกกำลังที่เรียนมาไม่ว่าจะเป็น การคูณ การหาร เลขยกกำลัง และการเขียนเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก ไปประยุกต์ใช้ในการแก้ โจทย์ปัญหาเกี่ยวกับเลขยกกำลัง รวมทั้งไปประยุกต์ใช้ในชีวิตประจำวันได้มากมาย  ในบทความนี้จะกล่าวถึงการนำความรู้เกี่ยวกับเลขยกกำลังไปใช้แก้โจทย์ปัญหาคณิตศาสตร์ ดังตัวอย่างต่อไปนี้ ตัวอย่างที่ 1 – 3 ตัวอย่างที่ 1  เด็กชายศิระนำแท่งลูกบาศก์ไม้ขนาด 5³ ลูกบาศก์เซนติเมตร  มาจัดวางในลูกบาศก์ใหญ่ที่มีความยาวของแต่ละด้านเป็น

who what where

Who What Where กับ Verb to be

สวัสดีน้องๆ ม. 2 ทุกๆ คนนะครับ วันนี้เรามาทำความเข้าใจเกี่ยวกับการใช้ Who/What/Where ร่วมกับ Verb to be กันครับ ไปดูกันเลย

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1 

โลโก้ NockAcademy

ทดลองฟรี!

เข้าใจได้ทันที NockAcademy ไลฟ์สดอันดับ 1